Go to the U of M home page
School of Physics & Astronomy
School of Physics and Astronomy Wiki

User Tools


classes:2009:fall:phys4101.001:lec_notes_1028

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
classes:2009:fall:phys4101.001:lec_notes_1028 [2009/10/28 20:25] x500_voukx002classes:2009:fall:phys4101.001:lec_notes_1028 [2009/10/31 15:45] (current) yk
Line 1: Line 1:
-===== Oct 28 (Wed)  =====+===== Oct 28 (Wed) 3.4 generalized probability, delta-func normalization =====
 ** Responsible party: poit0009, Hydra   **  ** Responsible party: poit0009, Hydra   ** 
  
Line 19: Line 19:
 \\ \\
  
 +==== Main points discussed ====
 +  * Normalization of non-normalizable wave function: why <math> < f_{p}|f_{p'}> =\delta (p-p^{'})</math> makes sense?
 +  * generalized probability interpretation.
 +  * momentum-space based wave function, energy-space based wave function, real-space based wave function (what we have been dealing with)
  
 +===Normalization of non-normalizable wave function===
 First, we start off with the question of why <math> < f_{p}|f_{p'}> =\delta (p-p^{'})</math> First, we start off with the question of why <math> < f_{p}|f_{p'}> =\delta (p-p^{'})</math>
 And what exactly does this mean? And what exactly does this mean?
  
 To begin, we know that we can operate on an eigenfunction as follows: To begin, we know that we can operate on an eigenfunction as follows:
-<math>\widehat{p}|f_{p}>=p|f_{p}></math> where we have simply multiplied “p” onto each part of the vector +<math>\widehat{p}|f_{p}>=p|f_{p}></math> where we have simply multiplied “p” onto each part of the vector.
  
-So for any “Q” we have <math>\widehat{Q}|q_{n}>=q_{n}|q_{n}></math>+>In the past, for some operator “Q,” its eigenvalue and eigenvector, we can express this relation as <math>\widehat{Q}|q_{n}>=q_{n}|q_{n}></math> 
 +
 +>and we tried to normalize the eigenvector so that <math><q_{n}|q_{n}>=1 </math> 
 +
 +>or more in general, for two eigenvectors <math> q_{n}</math> and <math>q_{m} </math> we will have <math><q_{m}|q_{n}>=\delta _{m,n}</math>.
  
-and we know that <math><q_{n}|q_{n}>=1 </math>+For our current case: <math> f_{p}</math>, we know <math> f_{p}=Ae^{i\frac{p}{\hbar}x}</mathwhere the usual "k" has been replaced with  <math>\frac{p}{\hbar}</math>
  
-so for two vectors <math> q_{n, q_{m</math> we will have <math><q_{m}|q_{n}>=\delta _{m,n}</math>+Then can we normalize this wave function by setting |A| properly so that <math> \int_{-\infty}^{\infty}f_{p}^{*}\: f_{p^{'}}\; dx = 1</math>?
  
-So to solve the case for <math> f_{p}</math>, we know <math> f_{p}=Ae^{i\frac{p}{\hbar}x}</math> where the usual "k" has been replaced with  <math>\frac{p}{\hbar}</math>+Let's try.
  
-Then +<math>1 = |A|^{2} \int_{-\infty}^{\infty}e^{-i\frac{p}{\hbar}x}\: e^{i\frac{p'}{\hbar}x}\; dx </math>
-<math>A^{2} \int_{-\infty}^{\infty}f_{p}^{*}\: f_{p^{'}}\; dx </math>+
  
-<math>= A^{2} \int_{-\infty }^{\infty}e^{-i\frac{p}{\hbar}x}\: \; e^{i\frac{p'}{\hbar}x}\; dx </math>+<math>=|A|^{2} \int_{-\infty}^{\infty}e^{-i\frac{p-p^{'}}{\hbar}x}\; dx</math>
  
-<math>=A^{2} \int_{-\infty}^{\infty}e^{-i\frac{p-p^{'}}{\hbar}x}\; dx</math>+This is, as you may remember, one way to express the delta function (times 2pi), where <math>\frac{p-p^{'}}{\hbar}</math> should be the argument of the delta function.
  
-<math>=A^{2}  2\pi \int_{-\infty}^{\infty}\delta \left ( \frac{p-p^{'}}{\hbar} \right )dp+<math>=|A|^{2}  2\pi \delta \left ( \frac{p-p^{'}}{\hbar} \right )
 </math>  </math> 
  
-and then we use a u-substitution <math>p=\hbar </math>so <math>dp=\hbar dk</math> so we find+Since this form of delta function is not very familiar to us, we need to use substitution to bring it to more familiar form, where the argument should look like (k-k') form.  Also delta function mean something only when it goes inside an integral, and that integral should be over //p// originally, but when we do the substitution to //k//, dp has to be converted to dk in a proper way.
  
-<math>=2\pi \hbar A^{2}\int \delta (k-k^{'})dk</math>+Following this plan, we use a substitution <math>p=\hbar k </math>so <math>dp=\hbar dk</math> so we find
  
-so we find <math>A=\frac{1}{\sqrt{2\pi \hbar}}</math>+<math>=2\pi\hbar |A|^{2} \delta (k-k^{'})</math> where the implied integral variable has changed from //p// to //k//. 
 + 
 +This suggests that there is no way to accomplish <math> \int_{-\infty}^{\infty}f_{p}^{*}\: f_{p^{'}}\; dx = 1</math> no matter what value we choose for //A//. 
 + 
 +If we give up this idea, and normalize <math>f_p</math> to the delta function, then <math>A=\frac{1}{2\pi\hbar}</math>, but at this point, this is an arbitrary decision.  We could have chosen so that <math> \int_{-\infty}^{\infty}f_{p}^{*}\: f_{p^{'}}\; dx = 10000\delta(k-k')</math> equally justifiably as <math> \int_{-\infty}^{\infty}f_{p}^{*}\: f_{p^{'}}\; dx = \delta(k-k')</math>
 + 
 +In any case, for now, we find <math>A=\frac{1}{\sqrt{2\pi \hbar}}</math>
  
 so <math> f_{p}=\frac{1}{\sqrt{2\pi \hbar}}e^{i\frac{p}{\hbar}x} </math> so <math> f_{p}=\frac{1}{\sqrt{2\pi \hbar}}e^{i\frac{p}{\hbar}x} </math>
Line 59: Line 72:
 The above expression is the all important equation representing momentum space, <math>\Phi(p,t)</math> The above expression is the all important equation representing momentum space, <math>\Phi(p,t)</math>
  
 +>Let's remember that we expanded wave functions in terms of stationary-state wave functions (linear combination), <math>|\psi>=\sum C_n \psi_n(x)</math>, where C_n's can be calculated by <math>C_n=<\psi_n|\psi></math>.
 +>
 +>Furthermore, we learned that |C_n|^2 can be INTERPRETED to be the probability that the particle would be observed to be in the state with energy E_n.  To make sure this interpretation makes sense, we also checked that 
 +><math>\sum C_{n}=1 </math> and
 +><math>\sum |C_{n}|^{2}E_{n}=<E>_{\Psi}</math>.
 +>To prove that this is possible, we start with <math> \hat{H}\Psi=E\Psi</math>  where <math>\hat{H}=\left( -\frac{\hbar^{2}}{2m}dx+V \right )</math>  is the Hamiltonian.
 +>
 +>With the definition of expectation value, <math> <E>=\int \Psi^{*}(x,t) \: \hat{H} \; \Psi(x,t)\; dx</math>
 +>
 +><math>=\int \sum C_{n}\Psi_{n}^{*}\; \hat{H}\; \sum C_{m}\Psi_{m}\; dx</math>
 +>
 +>=<math> E_{n}\sum  C_{n}^{*}C_{m}\int \Psi_{n}^{*}\Psi_{m}\; dx</math>
 +>
 +>Here <math>\Psi_{m}^{*}\Psi_{n}=\delta_{m,n}</math>
 +>
 +>So it is proven that <math>\sum |C_{n}|^{2}E_{n}=<E></math>
  
-The equation for <math>\Psi(p,t)</math> is a result of a Fourier transform, =><math> \sum C_{n}\Psi_{n}</math> 
-Here, the sum of all coefficients are equal to 1 <math>\sum C_{n}=1 </math> which holds true when the wavefunction is normalized. 
- 
-With these coefficients we can calculate the expected energy, <math>\sum |C_{n}|^{2}E_{n}=<E>_{\Psi}</math> 
- 
-To prove that this is possible, we start with <math> \hat{H}\Psi=E\Psi</math>  where <math>\hat{H}=\left ( -\frac{\hbar^{2}}{2m}dx+V \right )</math>  is the Hamiltonian. 
- 
-With the definition of expectation value, <math> <E>=\int \Psi^{*}(x,t) \: \hat{H} \; \Psi(x,t)\; dx</math> 
- 
-<math>=\int \sum C_{n}\Psi_{n}^{*}\; \hat{H}\; \sum C_{m}\Psi_{m}\; dx</math> 
  
-=<math> E_{n}\sum  C_{n}^{*}C_{m}\int \Psi_{n}^{*}\Psi_{m}\; dx</math>+Instead of <math>\psi_n</math>'s, can we use <math>f_p</math>'s to do the same (except the summation will be integral)?
  
-Here <math>\Psi_{m}^{*}\Psi_{n}=\delta_{m,n}</math>+Namely, <math>\Psi(x,t)=\int \Phi(p,t)f_p dp</math> where <math>\Phi(p,t)</math> plays the role of C_n's.  It should be calculable by <math>\Phi(p,t)=<f_p|Psi(x,t)</math> Furthermore, <math>|Phi(p,t)|^2</math> should be interpreted as probability (density).  For the last part, we need to be able to show that  
 +<math>\int |\Phi(p,t)|^2 dp 1</math> and 
 +<math>\int p |\Phi(p,t)|^2 dp = <p></math>.
  
-So it is proven that <math>\sum |C_{n}|^{2}E_{n}=<E></math>+It turns out that if you choose so that <math> \int_{-\infty}^{\infty}f_{p}^{*}\: f_{p^{'}}\; dx 1</math> everything works out.  (Students are strongly encouraged to show this claim is true.  Some of them may appear in the next quiz!  (//Yuichi//)
  
  
classes/2009/fall/phys4101.001/lec_notes_1028.1256779502.txt.gz · Last modified: 2009/10/28 20:25 by x500_voukx002