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Preface
How to Use This Book

"I understand the material but I just can't do
the problems."

"I can do the homework problems but the
problems on the test are just too different."
"If I only knew the right formula, I would
have gotten that problem right."

"I recognized that problem but I just couldn't
remember the solution."

If you have ever felt that way about
physics problems, this booklet is for you. It
is intended to provide guidance for students
wishing to develop a technique for solving
physics problems similar to that used by
experts. The technique is based on research
describing how experts in many fields solve
real problems. You will not find clever
procedures to shorten the solution of certain
types of problems in this booklet. No
mathematical tricks are presented. Instead
we try to explain how to use a general
strategy that works for physics and all other
fields that use systematic problem solving.

No matter what your field of interest,
problem solving consists of approximately
the same steps: recognize the problem
(what's going on here?), describe the problem
in the terms used by your field (what does
this have to do with what I know?), plan a
solution (where do I go from here?), execute
the plan (what's the answer?), and evaluate
the solution (can my answer be true?).
Although an expert might accomplish some
of these steps mentally, a non-expert does not
yet have the years of practice needed to
develop the necessary memory structure.

The non-expert can implement the process
using writing as an extension of memory. A
logical, well organized written analysis of the
problem is the most important tool in
problem solving. As most students know, the
most difficult part of solving a problem is
getting started on the right track. The
problem solving technique in this booklet is
designed to help you do just that.

The booklet is not really designed to
be read from beginning to end. It is more
like a reference book which can be entered
anywhere. We suggest reading Chapter 1 to
get the overall picture of the strategy. Then
try working out some of the problems for
which complete solutions are given. We
have given solutions to typical textbook
problems which occur at the beginning of an
introductory physics course. Once you catch
on, you should be able to apply this problem
solving technique to any situation on your
own. If you have trouble applying any of the
problem solving steps, read the appropriate
section in Chapter 2. If you have trouble
with the specific approaches of kinematics,
dynamics, or conservation, read the
appropriate parts of Chapter 3, 4, or 5.

Problem solving is a skill and, as with
any skill, the best technique often seems
"unnatural." Just think about your favorite
sport. With practice you will get better and
more efficient. After a while, this technique
will become "second nature" to you. Practice
is the key. But practice is only useful if you
are always practicing the same thing. Pick
plenty of your own exercises from your
textbook. Practice writing down all of the
steps of the general problem solving strategy



even if you know an "easier" way of solving
the problem. After practicing on the "easy"
textbook exercises try some of the "realistic"
problems in this booklet. Only a few
solutions are given but, if you are good at
using the problem solving strategy, you will
know if you got them right.

Many people have contributed a great
deal to the evolution of this booklet. First we
thank the numerous researchers in expert-
novice problem solving upon whose work
this booklet is based. Pure research is always
the basis for sound practice. Many graduate
students in both physics and science
education at the University of Minnesota
have made very important contributions. We
especially wish to thank Ron Keith who was
responsible for much of the original draft of
the booklet. Bruce Palmquist, Scott
Anderson, Doug Huffman, Jennifer Blue and
James Flaten then extended and refined the

work. Many physics teaching assistants have
contributed to the development and testing of
the general problem solving strategy and the
evolution of this booklet. We are also
grateful to the many undergraduates who
have participated in the courses through
which this booklet was developed. Finally
we thank Professors Charles Campbell,
Clayton Giese, Walter Johnson, Roger Jones,
and Konrad Mauersberger at the University
of Minnesota for their comments and
contributions in the development of this
booklet.

Kenneth Heller,
Astronomy
Patricia Heller, Department of Curriculum
and Instruction

School of Physics and

University of Minnesota, 1995



Chapter 1

A Logical Problem Solving Strategy

Introduction

At one level, problem solving is just that,
solving problems. Presented with a problem
you try to solve it. If you have seen the
problem before and you already know its
solution, you can solve the problem by recall.
Much of the time, however, you have never
experienced this situation before (if you had,
you would not call it a problem). Solving real
problems involves making a logical chain of
decisions which lead from an unclear situation
to a solution. Solving physics problems is not
very different from solving any kind of
problem. In your professional life, you will
encounter new and complex problems (after
all if they knew how to solve them, why
would they pay you?). The skillful problem
solver is able to invent good solutions for
these new problem situations. But how does
the skillful problem solver create a solution to
a new problem? And how do you learn to be
a more skillful problem solver?

The purpose of this booklet is to provide
you with some guidance for solving physics
problems. The technique given in this booklet
is based on research done in a variety of
disciplines such as physics, medical diagnosis,
engineering, project design and computer
programming. There are many similarities in
the way experts in these disciples solve
problems. The most important result is that
experts follow a general strategy for solving
all complex problems. The following sections
in this chapter describe the characteristics of
this general problem-solving strategy. In
Chapter 2 this general strategy is elaborated in
a way that makes it particularly useful for

solving the physics problems you will
encounter in this course. Chapters 3, 4, and 5
describe how to use the problem solving
strategy to solve problems using kinematics,
dynamics, and conservation ideas. These
chapters also include example textbook
problems with solutions and some additional
problems for you
to practice solving using the problem solving
strategy. If you learn this strategy you will be
successful in this course. In addition, you will
become familiar with a general strategy for
solving problems that will be useful in your
chosen profession.

A Logical Problem-Solving Strategy

Experts solve real problems in several
steps. Getting started is the most difficult
step. In the first and most important step, you
must accurately visualize the situation,
identify the actual problem, and identify
information relevant to the problem. At first
you must deal primarily with the qualitative
aspects of the situation. You must interpret
the problem in light of your own knowledge
and experience. This enables you to decide
what information is important, what
information can be ignored, and what
additional information may be needed, even
though it was not explicitly provided. In this
step drawing a useful picture of the problem
situation is crucial to getting started correctly.
A picture is worth a thousand words (if it is
the right picture). In the second step, you
must represent the problem in terms of formal
concepts and principles, whether these are
concepts of engineering design, concepts of
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medicine, or concepts of physics. These
formal concepts and principles use the
accumulated knowledge of your field and thus
enable you to simplify a complex problem to
its essential parts. Frequently, your field has
developed a formalized way to diagram the
situation which helps show how the concepts
are usually applied to a problem. Third, you
must use your representation of the problem to
plan a solution. Planning results in an outline
of the logical steps required to obtain a
solution. In many cases the logical steps are
conveniently expressed as mathematics.
Fourth, you must determine a solution by
actually executing the logical steps outlined in

your plan. Finally, you must evaluate how
well the solution resolves the original
problem.

The general strategy can be summarized
in terms of five steps.:

(1) Comprehend the problem.

(2) Represent the problem in formal

terms.

(3) Plan a solution.

(4) Execute the plan.

(5) Interpret and evaluate the solution.
The strategy begins with the qualitative
aspects of a problem and progresses toward
the quantitative aspects of a problem. Each
step uses information gathered in the previous
step to translate the problem into more
quantitative terms and to clarify the decisions
which you must make. These steps should
make sense to you. You have probably used a
similar strategy, without thinking about it,
when you have solved problems before.

The Importance of Writing

Solving a problem requires that you
constantly make decisions. This is very
difficult to do if you must also remember

many pieces of information and the
relationships  between those pieces of
information. Soon you overload your brain

which has only a small number of short term
memory locations. You could forget
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important parts of the problem or the steps in
a mathematical procedure. The chain of
decisions you construct may even have logical
flaws. Drawing pictures and diagrams and
writing your procedures using words,
symbols, and mathematics makes the paper a
part of your extended memory. Your brain is
then free to deal with the decision-making
process. The single biggest mistake of novice
problem solvers is not writing down enough in
a form which is organized to be a useful aid to
their memory. If you have had the experience
of understanding how to solve a problem
when someone shows you how but “getting
lost” when you try to do a similar problem
yourself, the effective use of writing could be
your primary trouble.

A Physics-Specific Strategy

Each profession has its own specialized
knowledge and patterns of thought. The
knowledge and thought processes that you use
in each of the steps will depend on the
discipline in which you operate. Taking into
account the specific nature of physics, we
choose to label and interpret the five steps of
the general problem solving strategy as
follows:

1. Focus the Problem: In this step you
develop a qualitative description of the
problem. First, visualize the events described
in the problem using a sketch. Write down a
simple statement of what you want to find out.
Write down the physics ideas which might be
useful in the problem and describe the
approach you will use. When you finish this
step, you should never have to refer to the
problem statement again.

2. Describe the Physics: In this step you
use your qualitative understanding of the
problem to prepare for a quantitative solution.
First, simplify the problem situation by
describing it with a diagram in terms of simple
physical objects and essential physical




quantities. Restate what you want to find by
naming specific mathematical quantity(ies).
Using the physics ideas assembled in step 1,
write down equations which specify how these
physical quantities are related according to the
principles of physics or mathematics. The
results of this step contains all of the relevant
information so you should not need to refer to
step 1 again.

3. Plan_the Solution: In this step you
translate the physics description into a set of
equations which represent the problem
mathematically by wusing the equations
assembled in step 2. Each equation should
have a specific goal to find a single unknown
quantity in the problem. An equation thus
used may involve a new unknown quantity
which must be determined using another
equation. In other words, solving the original
problem usually involves creating and solving
sub-problems. As you do the mathematical
operations to isolate your unknown quantities,
you create an outline of how to arrive at a
solution. You will find that most of your effort
will go into deciding how to construct this
logical chain of equations with less effort
spent on mathematical operations.

4. Execute the Plan: In this step you
actually execute the solution you have
planned. Plug in all of the known quantities
into the algebraic solution, which is the result
of step 3, to determine a numerical value for
the desired unknown quantity(ies).

5. Evaluate the Answer: Finally, check
your work to see that it is properly stated, not
unreasonable, and actually answers the
question asked.

Consider each step as a translation of the
previous step into a slightly different
language.

You begin with the full complexity of real
objects interacting in the real world and
through a series of decisions arrive at a simple
and precise mathematical expression.

The solution to the following problem
illustrates each step. On the right side of the
page is the actual solution, as you might
construct it. On the left side of the page are
brief descriptions of each step of the solution.
We have used a familiar situation so that you
can concentrate on understanding how the
strategy is applied. In later chapters, we will
consider each of the steps individually and in
more detail.

Problem Solving Strategy

| Problem Statement|

N

Focus the Problem ]l

v

Describe the Physics]

v

Plan the Solution ]

v

Execute the Plan ]l

Evaluate the Answer ||




Example 1: Jeff and Scott are first rate runners. Jeff's best time in the mile is 4 min, 57 sec.
Scott's best time in the mile is 4 min, 38 sec. If Scott and Jeff raced each other at
their best in a mile run, by how far would Scott beat Jeff?

(1) Focus the Problem:

i‘ 1 mile -
Visualize the events described in the problem Jeff !
and draw a sketch. —> —> |

, | 4 min 38 sec 4 mid 57 se:
Write down what you want to find. | | |

=9

. ) . <d_>
Write down the physics ideas that help you Scott |
understand the events and describe the E— |
approach you will use. | | 4 mip 38 se

Start Finish

Question: What is the distance between the runners when Scott crosses the finish
line?

Approach: Use the definition of average velocity to relate the runner’s
displacement to the elapsed time.

Assume that Jeff’s average velocity is the same for this race as for the
entire mile.

(2) Describe the Physics:

| Jeff | Voo

Simplify the problem by describing it in terms ’_) Y [ ! |
of simple physical objects and physical Scott
quantities. Usually this requires defining a —_ > e d -
coordinate system. Restate what you want to | Vs I r +x
find in terms of a target quantity. Write down X, X, X,
how these physical quantities are related by to < =0 0 tg t 11 "

incipl finitions of physics. N T = L mil
principles and definitions of physics tgz 0 ti 4 min 38 s 27%?25

1 mile 1 mile

v =, V =
J.Ave 297 sec S,Ave 278 sec
Target Quantity: d

Quantitative Relationships: V pye ZE

d=x-x1



(3) Plan_the Solution:

Translate the physics description into a set of
equations which relate specific physics
quantities. Determine if the equations will
allow you to find the answer you want. Check
to see that there are no left over unknowns.
Check the units.

(4) Execute the Plan:

Put in known values of quantities to determine
the numerical solution.

(5) Evaluate the Answer:

Check your work to see that it is properly
stated, not unreasonable and that you have
actually answered the question asked.

unknowns
Find d: d
d =x,-x,
Find X, X1
X1 =X, X4
Vi Ave= =

t|—t, t

X] =Vy ave b1
d =X —=Vj ave t

Check Units: [mi]— [:;l] [sec]=[mi] oK

1 mile

(278 se9=0.064 mi
7 sec

The unit of distance is miles.

The answer is reasonable since the distance between
them is a small fraction of the total distance.

The answer is the distance between the two runners

at the finish.




In Example 1, you can clearly recognize
the logical flow of the problem solving steps.
In the first step, you focus your mental
processes by expressing the problem in
everyday terms in the form of a sketch,
extracting a question and stating your
approach. In the next step, you translate this
information into important physical quantities
and the relationships which characterize the
physics of the problem. Then using this
information, you construct a specific set of
equations that relate the unknown physics
quantities to those that you know and combine
them to solve the problem. Before going to
the next step you check your units to make
sure you haven’t made a math mistake. Next,
you follow your plan by plugging in numbers
to obtain a numerical solution. In the final
step, you check your work, and consider how
well the numerical solution answers the
original problem. The solution is complete
when you are convinced that you have an
answer, and that the answer is a good one.

Example 1 serves to illustrate the steps of
the strategy but not its value. Although you
can understand the logical steps, you might
question its usefulness. Perhaps after reading
the problem, you knew just what equations
you would use to solve the problem. You
didn't need to reason through each step of the
strategy. That is because this situation is
simple enough that it is not a real problem for
you. It does show a technique which will help
you solve real problems, those you don’t
already know how to solve. This is the
method that experts use to confront problems
that they don’t know how to solve. Expert
problem solvers employ this strategy because
it is the most effective and efficient way to
solve realistic problems. Of course, those
problems require many more steps and many
more decisions. To prepare for the real world,
you will need to master this powerful problem
solving technique.

The five-step

strategy represents an

1-6

effective way to organize your thinking to
produce a solution based on your best
understanding of physics. The quality of the
solution depends on the knowledge that you
use in obtaining the solution. Your use of the
strategy also makes it easier to look back
through your solution to check for incorrect
knowledge or assumptions. That makes it an
important tool for learning physics. If you
learn to use the strategy effectively, you will
find it a valuable tool to use for solving new
and complex problems and for learning
physics.

Problem Difficulty

Throughout this course you will
encounter problems whose difficulty ranges
from the simple to the quite complex. Some
straightforward, but not necessarily easy
exercises (called problems) are given at the
end of each chapter in your textbook. These
exercises allow you to practice using the
physics principles presented in the chapter.
Exercises are wusually (but not always)
characterized by certain features:

« They may involve only a single
application of one major principle, so that
deciding on an approach to the problem is
simple.

» The question is clearly stated as the need
to find some specified physics quantity,
e.g. velocity, energy, force, so that the
relevant physics description is often
suggested by the problem statement itself.

* Just enough information has been
provided for you to determine a
numerical value for the desired quantity,
so that describing the situation and
problem approach are simplified.

» All quantitative information is given in a
simple set of units, so that if the correct
principle is applied, the numerical
solution will be correct. This simplifies
evaluation of the solution.

* They often resemble other exercises
which you have recently encountered.



Because the objects described in the
exercise and their relationships are
similar to other examples given,
visualization of the problem is simpler.

It is strongly recommended that you use
the five-step strategy when you are solving
these textbook exercises. This will help make
the strategy feel natural to you when you use
it on real problems. Although the textbook
exercises are straightforward, the physics
principle and/or mathematical technique used
may be new to you. Using the five-step
strategy helps you learn the physics principle
or mathematical technique because it provides
a logical structure and organization to guide
your thinking. Before you can solve the kinds
of problems you might encounter in real life,
you have to first practice your skills in simple
situations, and then in increasingly complex
situations as your skills improve.

Such well-focused exercises are not the
only kind of problems that you will encounter
in this course. On tests, you will be asked to
solve more realistic types of problems that can
be complex in several possible ways:

* The problems may require the application
of multiple principles and/or multiple
applications of the same principle.

* The question may not be stated as the
need

to find any particular quantity, much less

a specified physics quantity; the problem

may ask for a judgment, in which case

you must decide what quantities you need
to find in order to make a good judgment.

* The problem statement may include
information which is not useful at all. On
the other hand, some important
information may not be expressly
provided; you will have to provide that
information from your own general
knowledge.

* Quantitative information may be provided
in unfamiliar or inconsistent units.

* The objects or interactions described in
the problem situation may appear new to
you; it may appear that you never have
seen or solved a similar problem.

Problems with the above characteristics are
similar to the problems that you will
encounter in your chosen profession. It is
important for you to practice on the simple
textbook problems so that you develop the
knowledge and skills required to solve
realistic problems.

Next we give an example of a slightly
more difficult problem. As before, on the
right side is the actual solution, as you might
construct it.  On the left side are brief
descriptions of what is being done at each step
of the solution.



Example 2: Just as you turn onto the main avenue from a side street with a stop sign, a city
bus going 30-mph passes you in the adjacent lane. You want to get ahead of the
bus before the next stoplight which is two blocks away. Each block is 200-ft long
and the side streets are 25-ft wide, while the main avenue is 60-ft wide. If you
increase your speed at a rate of 5S-mph each second, will you make it?

(1) Focus the Problem: In this step of the problem solving strategy construct your initial
qualitative understanding of the problem situation. Write down what you know, what you want
to know, the physics you will use, and the assumptions you will make. This understanding can
be usefully expressed as follows:

Picture & Given Information:

What's happening? Visualize the problem
situation and make a sketch of the important | Vpus = 30 mph | | ap,=0 |
objects and events. '

us —pm — —-
— S N /=y
. o . car
Decide which given information may be = =7 Vear =
useful and write it down on the sketch. Vear=0 Ay stop light

8gar =5 mph/ sec1 |

200 ft 251t 200 ft

Question(s):
What is(are) the question(s)? Express it as Find the distance the car travels to catch up to the
some quantity to be found. bus. See if it is less than 425 feet.
Approach:
Use the definition of average velocity for the bus
What approach shall I take? Outline the since it travels at constant velocity.
concepts which can relate the given
information to the question. Use the relationship between acceleration and

position for the car since it travels at constant
acceleration.

Initial time is when the bus and the car are first
together. Final time is when the bus and the car
are next together.



(2) Describe the Physics: In this step use your physics ideas to translate your initial
understanding of the problem into a diagram of the actual problem. This diagram contains only
idealized physical objects and representations of important physical quantities. Identify which of
these physical quantities you need to find to answer the question. Write down the relationships
between the quantities which will help you determine the unknowns. This information can be

summarized with the following items:
Diagram & Define Quantities:
For kinematics problems, use a motion

diagram. This diagram requires:
* Coordinate axes.

* Simplified representations (usually points)

of objects.
* Indication of position, velocity and

acceleration of objects at important times.

Identify known and unknown quantities.

Target Quantity(ies):

Decide which of your unknowns you will
need to find in order answer the problem

question.

Quantitative Relationships:

Decide which physics principles or other
mathematical relationships are applicable

for the situation diagrammed above.

Vb Vb
bus& —> '. —>
I I ch
carg Veo =0, o ——>
—> “c > dc
| ! X
X0 to Xt tf
X, =0 x4 =?
tO:O tf :?
Vco:O Vef =?
vp =30 mph a_ =35 mph/ sec
Xf =9
Xf—X Xf
Vb = 2 = Vb congant

tp—t, ty

Xt :_;acéf _to)Z +Vco€f _to)"'xo
Xf :_;acéf)z

a, condant



(3) Plan the Solution: In this step translate your physics description of the problem into the
particular equations, which will help you solve the problem. Always begin with an equation
from your quantitative relationships containing the target quantity. If that equation contains
additional unknowns, write down another equation from your quantitative relationships
containing one of those unknowns. Continue until you have introduced a new equation for every
unknown in your plan.

Construct Specific Equations:

Use your quantitative relationships to write unknowns
specific equations relating unknown Find Xf Xf

quantities to ones which are known.

i
Find t
Xf
Vi =—
b te
X
tf :_f
Vb
2
Xp==a
£ 2 ¢ Vp
2V§
=X ¢
aC
Check Units:
Make sure the units on both sides of your [mi ]
equation are the same. | hr | ,
———=mi OK
mi
hr?
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(4) Execute the Plan: In this step carry out the mathematics specified in your solution plan in
order to determine a numerical value for your target quantity(ies).

Calculate Target Quantity(ies):

Put numerical values of known quantities
into the equation for the target quantity.
Convert units if necessary and calculate a
value for the target quantity.

i h | -
X ¢ :360(21)5( - ) =—mi

hr/ \3600s 10
Since 0.1 miles is 528 feet, which is more than 425

feet, you do not make it.

(5) Evaluate the Answer: As a result of executing your plan, you have a numerical answer to
the physics problem. In this final step, check that your answer is properly stated, not

unreasonable, and complete.

Is Answer Properly Stated?:
Check that your answer has the appropriate
units and sign.

Is Answer Unreasonable?:
Check that the magnitude of your answer is
not unexpectedly large or small.

Is Answer Complete?:
Check that you have answered the original
question.

Yes, miles are a correct unit for distance.

The answer is only about 100 ft longer than the 2
block distance which is not unreasonable.

The car does not make it. This answers the
question.
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The preceding example solutions intro-
duced the essential features of each step of the
physics problem solving strategy. In the table
below these features are summarized. In the
next chapter, these features are described
more fully and are illustrated by example.

In the third chapter, we will introduce a
format sheet which serves as a guide for
solving problems. Using these format sheets,

we will construct solutions to several
exercises, ranging from intermediate difficulty
to complex.

Finally, we will provide additional
problems so that you can practice using the
strategy. Practice is all important. Problem
solving is a skill which can be developed, but
as with all skills, your improvement depends
upon the effort you invest.

Summary of the Physics Problem Solving Strategy

1. Focus the Problem
¢ Picture & Given Information
* Question(s)
e Approach

2. Describe the Physics
* Diagrams & Define
Quantities
* Target Quantity(ies)
* Quantitative Relationships

Physics

3. Plan the Solution

4. Execute the Plan

5. Evaluate the Answer

o Start with equation which has

target quantity(ies)

e Identify other unknowns in
equation

* Solve a sub-problem for each
unknown

¢ Check Units

e Calculate Target Quantity(ies)

*Is Answer Properly Stated?
*Is Answer Unreasonable?
*Is Answer Complete?
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Chapter 2

The Five-Step Physics Problem Solving Strategy

Introduction

The purpose of this chapter is to clarify the
physics problem solving strategy. This will be
accomplished by addressing each step of the
strategy and illustrating that step by two
examples. The main features of each step are
first discussed, then that step is done for each
example. The two examples are shown below.

Each step of the example solution consists

of two parts: On the left-hand page you will
find the statements, equations, diagrams, and
other information that you might write down
if you were to solve the example using the
five-step strategy. On the right hand page is a
commentary on the problem solving process.
The commentary illustrates questions you ask
yourself and decisions you must make when
you are solving unfamiliar physics problems.

Example 3:

Example 4:

You are a driver who always obeys posted speed limits. Late one night you are
driving on a country highway at 55-mph. Ahead you see a sign that says, "Curve
Ahead 200 ft, Slow to 35 mph." You are 30 feet from the sign when you first see
it. You begin to apply your brakes at the instant you pass the sign. You slow
your car down at a rate of 7-mph each second. As you reach the curve, are you
traveling within the posted speed limit?

Your younger brother is waiting outside for his friends to come over to play
baseball. While he waits, he becomes restless and begins to play catch with
himself with the 4-o0z. baseball. He makes a vertical toss every 3 seconds. The
ball returns to his hand two seconds after he releases it. Does the ball get as high
as the top of your two story house?

1. Focus the Problem

The first and most important step to take
in solving any problem is to understand just
what the problem is. The goal of this step is
to establish a qualitative understanding of the
problem situation. To solve a problem about
the real world, you want to have a clear
mental image of the situation. This helps you
to use all of your general knowledge and
experience, not simply the physics formulas
that you recall. The essential features of this
step are:

Picture and Given Information

Begin by visualizing the events as
portrayed in the problem statement. Identify
the objects and the time sequence of events
which are central to understanding the
situation. Of particular importance are those
times when an object experiences an abrupt
change. A sketch of the situation is a useful
way to focus your mind on the problem. All
of the given information should be added to
the sketch so you can see what is going on at a
glance.



Question(s)

Every problem has a question. After you
have reduced the problem situation to a
sketch, you need to determine the question.
For most textbook exercises this is not too
difficult. Usually there is a direct statement
which tells you what to find. For more
realistic problems, the question may not be
well formulated so that you can answer it with
a calculation. For example, you may be asked
to make a judgment. You must then restate
the question in a form which can be answered
by a physics calculation.  Consider the
following problem:

You and your friend are racing to see
who can be the first to make a
purchase from Burger Bros. Starting

at the same time from the
McDonald's  parking lot in
Dinkytown, you head for the

Roseville store and your friend heads
for the Bloomington store. If you
both agree to obey the speed limits
and all traffic regulations, who will
be the first to make a purchase?

This problem does not directly ask a question
which can be answered using quantities
determined using physics. However, the
question really deals with time, a physics
quantity. The question can be rephrased in
terms of three different questions: "How
much time does it take you to travel the
distance to the Roseville store? How much
time does it take your friend to travel the
distance to the Bloomington store? Which of
these time intervals is greater?" Time and
distance are the basic physical quantities. The
time can be calculated from other physical
quantities such as velocities, positions and
accelerations. It is clear you will have to
make some assumptions about each person’s
average speed which depends on the speed
limit. Rephrasing the question in terms of

time enables you use physics to analyze the
problem quantitatively. In many problems,
success in solving the problem will depend
critically upon your translation of the
question(s) into physics terms.

Approach

Once you have a useful sketch of the
situation and you have identified a question
whose answer should resolve the problem,
you can begin to think about how to approach
the problem: What can physics tell you about
the events? In your approach you gather your
thoughts about how physics can help you
solve the problem. It represents your first
guess as to what facts and physics principles
will be useful in the creation of a solution.
Your approach helps you to make decisions
regarding the following questions: What
given information is potentially useful for
answering the question? What additional
information might I need, even if I have to
estimate  it? What information seems
irrelevant and can be ignored?

In physics, there are a few basic patterns
of explanation, fundamental principles, which
have proved exceptionally valuable for
thinking about natural events. The kinematics
description of motion is one of these.
Newtonian forces and energy conservation
and momentum conservation are other
fundamental ways of thinking about how the
motion of objects is affected by interactions
with other objects. Each fundamental
principle typically relates several physical
quantities through a mathematical
relationship. Selecting one or a combination
of fundamental principles determines your
approach to the problem. Whether or not a
physics principle will prove useful in a given
situation depends upon characteristics of the
problem. In the approach you write down
your best guess of which of these principles
will be most useful, and perhaps easiest for
solving this particular problem.



Focus the
Problem Statement

~. Problem

construct a mental image

of the sequence of events

described in the problem
statement

l

sketch a picture which
represents this mental
image; include given
information

¢

determine the question

¢

select a qualitative approach
which should lead to a
solution to the problem

* What's going on?
* What objects are involved?
* What are they doing?

* Are all the important objects shown?

* Are the spatial relations between the
objects shown?

* Are the important times represented?

* Are the important motions represented?

* Are the important interactions

] represented?

* Does the question ask about a specific
measurable characteristic(s) about a
particular object(s)? If not, reformulate it
so it does.

* What is the system of interest?

/ » Which physics principles could be used to
solve the problem?

* What information is really needed?

D éescr ib e the P hy \) ics * Are there only certain time intervals

during which one approach is useful?
* Should we make any approximations?



Example 3: You are a driver who always obeys posted speed limits. Late one night you are
driving on a country highway at 55-mph. Ahead you see a sign that says, "Curve
Ahead 200 ft, Slow to 35 mph." You are 30 feet from the sign when you first see
it. You begin to apply your brakes at the instant you pass the sign. You slow
your car down at a rate of 7-mph each second. As you reach the curve, are you
traveling within the posted speed limit?

Focus the Problem

Picture and Given Information:

{ sign

SSmgh' 55 mph |
| S

| <—
ﬁ| Q’I 7 mph/s

Vf——l

_

> | <
Q’I 7 mph/s

~ 30 - 200 ft

P

speed limit 35 mp

Question(s):

What is the speed of the car when it reaches the curve?

Is that speed less than 35 mph?

Approach:

Use kinematics.

Assume the car’s acceleration is constant between the sign and the curve.

For constant acceleration, the average acceleration equals the instantaneous acceleration.

Use the definition of average acceleration to relate the change of velocity to the time interval.

Use the relationship between acceleration and position for constant acceleration.




COMMENTARY

Picture and Given Information:

First visualize the events described.

» What are the important objects and what do they do from beginning to end?
The situation describes a car moving along a highway. The problem begins 30 ft from a
highway sign and ends 200 ft beyond the sign, where a curve in the road begins.

* What is a good perspective from which to sketch the motion?
Use a bird's eye view (view from above) to show the position of the car relative to the curve
in the road.

* Does the motion of the car change between the beginning and the end of the described
motion?
Yes. The speed is constant up to the sign, but decreases thereafter. Put these points on the
sketch as well.

Question(s):

* What do I need to find out?
The question is posed in the last sentence. I must calculate the speed of my car as I enter the
curve and compare it to the speed limit of 35 mph.

Approach:

* Which general concepts and principles are useful for thinking about this problem? What
kind of problem is it?
Applying kinematics seems like a good approach. The final velocity of an object traveling
from point to point depends on its initial velocity, its acceleration, and the distance between
those points. Position, velocity, and acceleration are important quantities. But time is also
an important quantity in kinematics. Since I don’t know the time that the car takes to travel
between the sign and the curve, I may need to use more than one kinematics relationship.

* Is any part of the problem not useful for answering the question?
Yes. We can neglect the motion of the car before it reaches the sign because we know the
speed of the car at this point and we know how far the car is from the curve.



Example 4: Your younger brother is waiting outside for his friends to come over to play
baseball. While he waits, he becomes restless and begins to play catch with
himself with the 4-oz. baseball. He makes a vertical toss every 3 seconds. The
ball returns to his hand two seconds after he releases it. Does the ball get as high
as the top of your two story house?

Focus the Problem

Picture and Given Information:

© A
g¢ OO0 ¢g 2 sec I:I

v(up) TO Oi v(down)

O O
% 4 oz ' |_|
Question(s):

What is the maximum height of the ball?

18 ft

Is it less than the height of the house?

Approach:
Use kinematics.

The ball has a constant acceleration (down) throughout its flight so its average acceleration
equals its instantaneous acceleration.

Use the relationship between acceleration and position for constant acceleration.
The velocity of the ball (but not its acceleration) is zero at its highest point.
Solve motion of ball for two different time intervals

1. Hand to maximum height (Rnow the final velocity)

2. Hand back to hand (Rnow the time interval)

Need to Rnow height of house. Estimate it. Height from _floor to ceiling is about 10 ft. Add
2 feet for floor above ground and space between first and second floor. About 22 ft .

Need to Rnow height of hand when ball released. Estimate it. About 4 ft from ground.
Height of house above release point of ball is about 18 ft.



COMMENTARY

Picture and Given Information:

First visualize the events described.

* What are the important objects and what do they do from beginning to end?
Only the baseball is moving, but its motion is to be compared to the height of the house.
Your brother tosses the ball straight up. After the ball leaves his hand, it travels up, but is
slowing down. The ball reaches some maximum height, before it begins to fall back down to
where he can catch it.

* What is a good perspective from which to sketch the motion?
A side view conveniently shows the position of the ball relative to the height of the house.
Draw the path of the ball down a little offset from its path up.

* Does the motion of the ball change between the beginning and the end of the described
motion?
Yes. From the instant your brother releases the ball upwards, until the instant just before he
catches it again, the ball has a constant acceleration down. That acceleration causes the ball
to slow down as it travels up and speed up as it travels down. At the top of its path, the
instantaneous velocity of the ball is zero but its acceleration is still down. During the actual
throwing and catching, the ball experiences different accelerations but these are not relevant.

Question(s):

* What do I need to find out?
The question is clearly stated in the last sentence. Find the baseball's highest point. Is that
point above the top of the house?

Approach:

» Which general concepts and principles are useful for thinking about this problem? What
kind of problem is it?

Kinematics is a good approach. How far the ball travels depends on its initial velocity and its
acceleration and the time of travel. But the height that it reaches also depends on the height
from which it is tossed. The acceleration is constant the entire time that it is in the air. The
time that it is in the air depends on from what height it is thrown and at what height it is
caught again. It may be useful to break the problem up into 2 time intervals even though the
motion does not change since you are asked for the height up but are given the total time up
and down.

* Do I need to assume any information which is not provided in the problem statement?

Yes. First I need to estimate the height of a two story house. The question asks to compare
the ball's maximum height to the top of the house. Second, I have to make assumptions
about the height from which the ball is thrown. How high the ball gets depends in part on the
height at which he releases the ball upwards. Suppose he releases the ball at shoulder height,
about 4 ft. It is also important to know where he catches the ball. An important piece of
information may be the duration of time for which the ball is in the air. This is affected by
the height at which he catches the ball. For convenience, assume that he catches the ball at
shoulder height.



Summary of Focus the Problem

When you have brought the problem into
focus in your mind and when you have made a
sketch, you have decided upon the essential
features of the problem. Moreover, you know
what you want to find and how you might go
about finding it from the given information. If

this step is completed correctly, you have no
need to refer to the original problem statement
again. In the next step of the problem solving
strategy, you use the ideas, sketch and
information to construct a physics description
of the problem, which in turn makes
determination of a solution easier.

Summary of the Physics Problem Solving Strategy

1. Focus the Problem
¢ Picture & Given Information
* Question(s)
* Approach

2. Describe the Physics
* Diagrams & Define Physics
Quantities
 Target Quantity(ies)
* Quantitative Relationships

3. Plan the Solution

4. Execute the Plan

5. Evaluate the Answer

» Start with equation which has
target quantity(ies)

 Identify other unknowns in
equation

» Solve a sub-problem for each
unknown

* Check Units

* Calculate Target Quantity(ies)

*Is Answer Properly Stated?
*Is Answer Unreasonable?
*Is Answer Complete?




2. Describe the Physics

In the second step of solving a problem,
uses the picture and approach from step 1 to
reduce the problem situation to its essential
physics concepts and principles. This step
involves drawing a physics diagram, defining
the target quantity(ies), and describing the
quantitative relationships that apply to the
problem. Here you specify the object or
objects of interest (the system), the times of
interest, and the positions of interest. You
also specify a coordinate system which will
allow you to define mathematically precise
physics quantities.

Diagram & Define Quantities

The Physics Description reduces the stated
problem to physics quantities which are
related by principles that are expressed
mathematically. Construct this physical
representation of the problem by treating the
real world objects as simplified objects which
can be characterized by a few physics
quantities. Assign unique names to represent
the wvalues of these important physics
quantities at important times. A good diagram
is the most useful tool in physics problem
solving because it provides an easily
understood summary of all the important
information. By carefully examining your
diagram, you can often recognize important
relationships between quantities that might
otherwise be missed.

Although there are different kinds of
diagrams, they all share certain characteristics.
The kind of diagram you use will depend on
your basic approach to the problem. For
example, motion diagrams conveniently
summarize the important information
concerning the motion (positions, times,
velocity, and acceleration) of an object and are
useful in a kinematics approach. Free body
and force diagrams are used for expressing
information about the interactions of objects
and the vector nature of that interaction. They

are useful in an interaction approach using
Newtonian force laws. A good diagram
always has a conveniently chosen coordinate
axes, a simple representation of important
objects, and unique representations of the
values of the relevant physics quantities of the
object at important times.

A good diagram requires coordinate
axes. Coordinate axes provide the reference
which allows you to express positions and
vector directions mathematically. If you
employ more than one axis, then the axes
should be at right angles to each other. Other
than that, the direction of coordinate axes is a
matter of your convenience. You decide
which directions will serve best as the axes,
and you can define the origin of the coordinate
axes as well as the positive direction. This
freedom often enables you to simplify
problems. For example, suppose there is a
problem in which a car slides down a twenty
foot long, icy driveway which is inclined at 10
degrees to the horizontal. You wish to find
the speed of the car at the end of the driveway.
If you choose axes which are horizontal and
vertical, then the problem is difficult because
the car moves along both directions. On the
other hand, if you choose an axis which is
parallel to the driveway then the problem is
simpler because the motion of the car is
entirely along that one direction.

On your diagram important objects
are represented by simple objects, usually
points. More elaborate drawings of the object
provide no useful physics information and
may confuse your mind with irrelevant
information. All of the relevant information
concerning an object and its behavior is
expressed in terms of the interactions of that
object with its environment, and its velocity
and acceleration at each position and time.
For example, in linear kinematics problems,
any object can be considered to be a point.
The size of the object, its shape, or its material
composition are not important. For rotational



motion, on the other hand, the object’s size
and shape may be crucial.

The diagram directly expresses all
useful physics information. For example, a
motion diagram shows the physics quantities
which are relevant to a kinematics description
of a problem. In that description, the motion
of an object is completely determined by its
position, velocity, and acceleration at each
instant of time. In most cases of interest the
motion of an object at one time (final time)
can be predicted from a complete description
of its motion (position, velocity, and
acceleration) at another time (initial time). In
the diagram, the position of an object at the
different times is indicated by separate points.
Next to each point, one arrow is drawn to
indicate the velocity of the object at that
instant. Another arrow is used to indicate the
acceleration of the object at that instant.

Target Quantity(ies)

Once you have constructed a simple
physics diagram, reformulate your original
question in terms of the physics quantities you
have defined. One (or more) of the unknown
quantities in your description represents the
information that you think will answer the
question(s) posed in words in step 1. Identify
that unknown by its symbol.

Quantitative Relationships

The final feature of the physics
description is a list of the quantitative
relationships between the physics quantities
which are applicable to the problem. These
relationships are of two kinds. First, there are
basic principles of physics or mathematics,
which always relate the quantities defined in
your diagram to each other. For example, the

average velocity is always the change in
position of an object divided by the
corresponding time interval to make that
change: vaye = Ax/At. After defining the
appropriate coordinate axes and angles the
mathematical expression such as sin6=V/V

represents another such relationship. The
other type of relationship which should be
included in your physics description is often
referred to as a relationship of constraint.
This relationships is only true for the specific
situation you are considering. For example,
suppose in a problem it is stated that the
distance traveled by a car is twice the distance
traveled by a truck. This establishes a
relationship of constraint between the quantity
that represents the car's position and the one
that represents the truck's positions at some
specified time.

In your text you will come across many
equations. Only a few of these, those
corresponding to Dbasic principles and
definitions, belong in the physics description.
Whenever you apply fundamental
relationships to a specific type of problem,
such as those dealing with freely falling
objects, you can develop specialized equations
which are valid only for that problem type.
Since there are many different types of
problems, the specialized equations are not
very useful knowledge, unless you will
encounter that specific situation over and over
again in your work. It is much more practical
to learn the few fundamental relationships and
how to apply them to many types of problems.
Developing the ability to apply fundamental
knowledge to situations you have never
encountered before is the aim of this course
and the emphasis in this booklet.



Focus the Problem

N

construct diagram(s) to
show important space and
time relationships of each
object

#

make sure all symbols
representing quantities
shown on diagram(s)
are defined

¢

state quantitative

relationships from
general principles and

specific constraints

declare a target
quantity

]
]
J
J

e

Plan the
Solution

Describe the
Physics

» What coordinate axes are useful? Which
direction should we call positive?

» Relative to the coordinate axes, where is
(are) the object(s) for each important time?

» Relative to the coordinate axes, what is
(are) the velocity and acceleration for each
object at each important time?
Are other diagrams necessary to represent
the interactions of each object or the time
evolution of its state?

* What quantities are needed to define the
problem mathematically using the
approach chosen?

* Which symbols represent known
quantities?

Which symbols represent unknown
quantities?

* Are all quantities having different values
labeled with unique symbols?

* Does the diagram(s) have all of the
essential information from the sketch?

Which of the unknowns defined on the
diagram(s) answers the question?

What equations represent the general
principle(s) specified in our approach and
relate the physics quantities defined in the
diagram?

* During what time intervals are those
relationships either true or useful?

* Are there any equations that represent
special conditions that are true for some
quantities in this problem?



Example3: You are adriver who dways obeys posted speed limits. Late one night you are driving
on a country highway at 55-mph. Ahead you see asign that says, "Curve Ahead 200
ft, Sow to 35 mph." You are 30 feet from the Sgn when you firg seeit. You begin to
apply your brakes at the instant you pass the Sgn. You dow your car down at arate of
7-mph each second. As you reach the curve, are you traveling within the posted speed
limit?

Describe the Physics

Diagram & Define Quantities:

Xo =O tOZO
[ > o —>
= aT L | xr=20ft te= V=2
| |
[ T
XO’tO Xt ,tf -7mph

Target Quantity(ies):

V¢ =?

Quantitative Relationships:

Since acceleration is constant,

Vf-VO Vf-VO
ety g

a

instantaneous acceleration equals average acceleration

And

X f :12-( a)éf -t0)2+voéf - t0)+X0 :%( a)(tf)2+v0éf)



COMMENTARY

Diagram & Define Physics Quantities:
For kinematics problems a motion diagram conveniently shows the velocity and acceleration
of the object at every important position and time. Every diagram has coordinate axes, with
the positive direction clearly indicated, as a reference for defining the positions of the object,
indicated simply by a point (dot), and the orientation of its motion.

* What are convenient coordinate axes?

In this problem, the velocity of the object is always along one direction, so a suitable
coordinate system would be along the direction of the velocity (horizontal) with "+" chosen
to be the direction the object is moving.

* Relative to the coordinate axis where is the object at important times?

Important times and positions are where you know the values of important physical
quantities (velocity and acceleration) of your chosen object, or where you think you may
need to know their value. There are two important positions for the car. Call x, the position
of the car as it passes by the sign, and t, the corresponding time. Call x¢ the position of the
car as it enters the curve, and tf the corresponding time. For convenience take X, to be the
origin of the coordinate system and t, to be the origin of time.

* Relative to the coordinate axis what is the magnitude and the orientation of the velocity of

the object at each important point?
The velocity of the object is parallel to the axis directed to the right. Because the object is
slowing down, the velocity is larger at x, than at xg. Next to each point, add an arrow
indicating the direction and relative magnitude of the velocity of the object at that point.

* Relative to the coordinate axis what is the acceleration of the object at each important point?
The acceleration refers to the change in the velocity. Since the object is slowing down, the
change in velocity is negative, (vf - vo) < 0. Therefore, the acceleration is parallel to the axis
and points to the left.

* For which of the defined quantities do you have a numerical value?

List known values for defined quantities. Also list which quantities are unknown.

Target :
* Of the unknowns defined above, for which do you want to determine a value in order to

answer the question?
Find the speed of the car as it enters the curve. That corresponds to vf.

Quantitative Relationships:
* Which basic physics principles or other relationships of constraint can you use to relate
known quantities to your target ?

In every kinematics problem, the only basic principles are the definition of velocity and the
definition of acceleration. For the special case of constant acceleration, we will use a
relationship derived from those basic principles.

* Are there any conditions which must be satisfied in order for these relationships to be valid?
Yes, the acceleration must be constant.




Example 4: Your younger brother is waiting outside for his friends to come over to play
baseball. While he waits, he becomes restless and begins to play catch with
himself with the 4-o0z. baseball. He makes a vertical toss every 3 seconds. The
ball returns to his hand two seconds after he releases it. Does the ball get as high
as the top of your two story house?

Describe the Physics

Diagram & Define Quantities:

ty
p—l = = ‘-)
yl ’tl__ . V1: 0 Yo 0 to 0 Vo
g¢ Y1 = ? tl =9? V1= 0
y2:y0:O t2:3S V2:?
\A p
=-32
Yol Lo @ gm0y
2 ¢ ¢ v,
gv¥ g Yo is shoulder height
Target Quantity(ies):
y; =? Is it greater than or equal to 18 ft?

Quantitative Relationships:

For constant acceleration
VfE=Vo Vf—7

g

Ctp—t,  ty
And

yf =% g)@f —to)2 +7’o(tf —to)+yo =%( d)@f)2+%(ff)



COMMENTARY

Diagram & Define Physics Quantities:
For kinematics problems a motion diagram conveniently shows the velocity and acceleration
of the object at every important position and time. Every diagram has coordinate axes as a
reference for defining the positions of the object, indicated simply by a point (dot), and the
orientation of its motion.

* What are convenient coordinate axes?

If that the ball travels straight up and down, a suitable coordinate system would be a vertical
axis with the upper side of the origin as chosen as the "+" direction.

* Relative to the coordinate axis where is the object at important times?

Important times and positions are where you know the velocity and acceleration of your
chosen object, or where you think you may need to know their value. Important positions for
the ball are the positions where it is released, where it is caught, and its highest position.

* Relative to the coordinate axis what are the magnitude and the orientation of the velocity of

the object at each important point?
On its way up the velocity of the ball is parallel to the axis directed upwards. The magnitude
of the velocity during this time decreases because the ball is slowing down. As it falls back
down, the ball's velocity is parallel to the axis directed downwards. The magnitude of the
velocity increases as it falls. At its highest point, the ball's velocity is zero at that instant.

* Relative to the coordinate axis what is the acceleration of the object at each important point?
The acceleration refers to the change in the velocity. Since the baseball is slowing down on
the way up, the change in velocity is down or in the negative direction in the chosen
coordinate system. That is the direction of the acceleration. At its highest point, the ball has
zero velocity at that instant but its acceleration is still down. As the ball moves downward, it
speeds up so the direction of the acceleration is still down.

» For which of the defined quantities do you have a numerical value?

List known values for defined quantities. Assume that the ball is released and caught at
shoulder height, about 4 ft above the ground. This means the ball must go 18 ft to reach the
top of the house.

Target :
* Of the unknowns defined above, which do you want to determine a value for in order to

answer the question?
Find the position of the baseball at its highest point. That corresponds to y; on the diagram.

Quantitative Relationships:
» Which basic physics principles or other relationships of constraint can you use to relate
known quantities to your target?
In every kinematics problem, the only basic principles are the definition of velocity and the
definition of acceleration. For the special case of constant acceleration, we will use a
relationship derived from those basic principles.

* Are there any conditions which must be satisfied for these relationships to be valid?
Yes, the acceleration must be constant.



Summary of Describe the Physics
When you have completed the physics
description, you have reduced the problem to
its essentials. You have defined the quantity
to be found and all of the quantities about
which useful information is known, or can be
reasonably assumed. You have also specified

the quantitative relationships which link
unknown quantities to known quantities. In
the next step of the problem solving strategy,
you translate this physics description into a set
of mathematical equations with a prescription
of how to use those equations to determine the
target quantity.

Summary of the Physics Problem Solving Strategy

1. Focus the Problem
e Picture & Given Information
*  Question(s)
* Approach

2. Describe the Physics
* Diagrams & Define Physics
Quantities
* Target Quantity(ies)
* Quantitative Relationships

3. Plan the Solution

4. Execute the Plan

5. [Evaluate the Answer

 Start with equation which has
target quantity(ies)

* Identify other unknowns in
equation

* Solve a sub-problem for each
unknown

* Check Units

» Calculate Target Quantity(ies)

Is Answer Properly Stated?
Is Answer Unreasonable?
*[s Answer Complete?




3. Plan the Solution

The goal of planning the solution is to use
the quantitative relationships between the
quantities defined in the physics description to
create a set of equations which is sufficient to
determine the value(s) of the target quantity.
In the process of creating this set of equations,
you automatically create a logical chain of
mathematical operations that will allow you to
compute a solution to the problem.

Construct the Solution

Always begin with an equation, one of
your quantitative relationships from the
Physics Description, which contains the target
quantity. This will ensure that your
mathematical efforts will actually solve the
problem you want. After writing this
equation, examine it to see which quantities
are known and which are unknown. It is
useful to keep a list of the unknown quantities
as they occur in the equations. If you only
have one unknown, the target, then you're
done.

Usually there will be more than one
unknown in this equation. If you have more
than one unknown, return to your quantitative
relationships to write down a different
equation which contains this new unknown.
You can consider this the beginning of a new
problem, a sub-problem. To solve your
original problem, you must solve the sub-
problem first. Solving a sub-problem does not
require getting a numerical answer. You only
need to solve for the sub-problem target
unknown in terms of unknown quantities
which have already been addressed earlier in
the problem plan.

Check to see if a new equation introduces any
new unknowns which were not already in
previous equations. If so add them to your list
of unknowns as they occur and solve for each
unknown as a further sub-problem. If not then
combine the equations to determine a value
for the target unknown. If other unknowns

have been introduced, return to your
quantitative  relationships and construct
different equations containing the new
unknowns. And so it goes, until your only
unknown is the problem’s target or you run
out of different equations you can construct.
If you run out of equations, either the problem
has no solution, one of your unknowns does
not actually determine the behavior of the
object and will algebraically cancel out of the
solution, or your Physics Description is
incomplete. Go back and check your picture
and approach to see if there is some
information your left out of your Physics
Description, or if your qualitative physic
reasoning tells you that one of your unknowns
is superfluous.

Remember, the rules of algebra are strict.
You cannot change the equations so that the
math works out. Usually a careless algebra
error is due to not taking enough time with
each step. It happens to everyone. One
technique you can use to find such an error is
to check the units of each term of each step of
your algebra, starting from where you are and
tracing back to the beginning.

Do not waste time plugging in numbers at
intermediate  stages. Sometimes many
potential calculations will cancel out in the
algebra. Of course it is always useful to put in
the value of any quantities that are zero.

Check the Units

After you have an equation in which the
only unknown is the target quantity, check
your units to see if you have made a
mathematical mistake. If you find your units
don’t balance, look back through your plan to
find the mistake and correct it.

The old adage "You can't add apples and
oranges." applies here. All terms which are
added together (or subtracted) in your
equation must have the same type of units.
The earliest step in which this is not true is the
step where you made your mistake. For
example, in the equation:



de type of units. If x is a distance: a, (bc) and
X=a+(bc)+T P (be)

(de/f) must all have the units of distance (e.g.
X, a, (bc), and (de/f) must all have the same

-18

ft, meters, km, mm, inch).

Calvin and Hobbes / By Bill Watterson

QUIZ: How Far apart were Jack
Jack and Joe leave Uheir | and Joe when they started ?
homes at {he same time and
drive toward each ather. Jack J
drives at &0 mph, while Joe

| drives at 30 mph, They pass
| each other in 10 minutes.
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Describe the Physics

N

choose one of the
quantitative relationships
which involves the target
quantity

are there additional
unknowns

choose a new equation from
your quantitative

relationships which involves
the new unknown

solve the equation for
the desired unknown
and substitute into the
previous equation

!

solve for the target
quantity and check the
units of the result

e

Execute the Plan

Plan the
Solution

* Which quantitative relationship includes

the target quantity?
For what object does that equation apply?
For what time interval does that equation

apply?

Are there any unknowns in the equation
other than the target quantity?

Are there any unknowns that cancel out in
the algebra?

Which quantitative relationship includes
the unknown quantity?

For what object does that equation apply?
For what time interval does that equation
apply?

Is this equation different from those
already used in this problem?

What unknown is the target of this specific
equation?

Which previous equations have that
unknown?

Are there any quantities that cancel out in
the algebra?

After all the substitution for unknowns, is

the only unknown left the target quantity?

Are the units the same on both sides of the
equation?



Example 3: You are a driver who always obeys posted speed limits. Late one night you are
driving on a country highway at 55-mph. Ahead you see a sign that says, "Curve
Ahead 200 ft, Slow to 35 mph." You are 30 feet from the sign when you first see
it. You begin to apply your brakes at the instant you pass the sign. You slow
your car down at a rate of 7-mph each second. As you reach the curve, are you
traveling within the posted speed limit?

Plan the Solution

Construct the Solution:

unknowns
Tiﬂde Vf
V¢ —V
a=—2° 1] t,
ty

Xt Z_;( a)@f)szVo(tf) 2]
0:%( a)@f)zwo@f)“xf
—V, i,/voz +2ax ¢

tf:

(a)
Vi —Vo
a= >
—Voi\/v0 +2ax ¢
()
+ 2
—V, vy +2ax¢
a =Ve—V,

(a)

2 ..
T4V +2axs =V velocity is + when car reaches the curve
2
1’V0 +2ax¢ =V¢

Check Units

(mT* [m] - ‘/Fgﬂzjr_rﬂ
\/LSJ T s oK




COMMENTARY

Equation #1:

1) What's a specific equation from your quantitative relationships involving the target quantity?
The definition of average acceleration includes the target quantity vy.

2) Are the signs in front of the quantities in the equation consistent with the diagram?
Yes. The acceleration is negative and the initial velocity and final velocity are positive.

3) Are there any additional unknowns in this equation?
Yes. tris a new unknown. Finding it is a sub-problem.

Equation #2:

1) What's a specific equation from your quantitative relationships involving the new unknown?
For constant acceleration the relationship between acceleration and position includes the
unknown tr.

2) Are there any unknowns in this equation which do not appear in the previous equation?
No!

3) Since there are no additional unknowns, solve the sub-problem. Solve equation 2 for tf and
put it into equation 1.

4) Choose the sign which physically agrees with the solution you desire. The other sign is also a
physical solution to the problem. Understand what it represents also. In this case if the car
continued to move with a negative acceleration, its velocity would change direction and some
time later it would return to the sign moving in the negative direction.

Check the Units:

* Do additive quantities have the same units?
Yes.

* Are the units the same as those expected for the target quantity?
Yes.



Example 4:

Your younger brother is waiting outside for his friends to come over to play
baseball. While he waits, he becomes restless and begins to play catch with
himself with the 4-o0z. baseball. He makes a vertical toss every 3 seconds. The
ball returns to his hand two seconds after he releases it. Does the ball get as high
as the top of your two story house?

Plan the Solution

Construct the Solution:

unknowns
Find M . i
y| :5( ‘g)(tl)2+Vo(t1) [1] motion of ball up Vosty
0-v,
g= t
£ =2
g

Find v,

0=3( D6) o) 13

1
0 :E( g)Z Vo

1
'E gh =V,

(-1 )2
- \5 gty
= »
i
=— ot
M| 3 gh
Check Units:

N

T

motion of ball up and back down

OK



COMMENTARY

Equation #1:

1) What's a specific equation from your quantitative relationships involving the target quantity ?
For constant acceleration the relationship between acceleration and position includes the
target quantity yp if we consider only the motion of the ball from the instant after it
leaves the hand until it reaches the top of its path.

2) Are there any additional unknowns in this equation?

Yes. t] and v, are new unknowns. Finding them will give rise to sub-problems.

Equation #2:

1) What's a specific equation from your quantitative relationships involving one of the new
unknowns ?

The definition of average acceleration includes the target quantity t;. We could have
chosen to solve for v, first but either way is OK. Since we want t|, we consider the
motion of the ball from just after it leaves the hand until it reaches the top of its path.

2) Are there any unknowns in this equation which do not appear in the previous equation?
No!

3) Since there are no additional unknowns, solve the sub-problem. Solve equation 2 for t; and

put it into equation 1. Some algebra can now simplify equation 1.

Equation #3:

1) What's a specific equation from your quantitative relationships involving the other of the new
unknowns ?

For constant acceleration the relationship between acceleration and position includes the
unknown v, if we consider only the motion of the ball from the instant after it leaves the
hand until just before it reaches the hand again. Because we are considering a different
part of the ball’s motion than before, this is a “new” equation.

2) Are there any unknowns in this equation which do not appear in the previous equation?
No!

3) Since there are no additional unknowns, solve the sub-problem. Solve equation 3 for v, and

put it into the results of equation 1 and equation 2. This determines the target quantity.

Check the Units:

* Do additive quantities have the same units?
There are no additive quantities this time.

* Are the units the same as expected from the target quantity?
Yes.



Summary of Plan the Solution

The purpose of this step of the problem
solving strategy is to use the quantitative
relationships from your physics description
to generate a set of equations that can be
used to solve for the target quantity. The
result of this plan is the logical development
of a solution which is easy to follow and
check for mistakes. The plan requires
decisions about which relationship to use
when faced with an unknown quantity. As
long as you always use new equations for
each unknown, you will reach the solution.
Unlike the world of consumption, in the
world of physics, recycling a used equation

is a bad idea. Reusing an equation adds no
new information so it cannot give you the
additional help you need to find a new
unknown.

Checking units is important since it will
save you from the algebraic mistakes that
everyone makes. If your solution plan is
neat and logical, you will usually find your
mistake.

So far you have determined what is
needed to solve the problem quantitatively
and how to perform that solution, but no
numerical values have been used. In the
next step you will execute the plan in order
to find a numerical answer to the problem.

Summary of the Physics Problem Solving Strategy

1. Focus the Problem
* Picture & Given Information
* Question(s)
* Approach

2. Describe the Physics
+ Diagrams & Define Physics
Quantities
» Target Quantity(ies)
* Quantitative Relationships

3. Plan the Solution

4. Execute the Plan

5. Evaluate the Answer

e Start with equation which has
target quantity(ies)

* Identify other unknowns in
equation

* Solve a sub-problem for each
unknown

* Check Units

* Calculate Target Quantity(ies)

*Is Answer Properly Stated?
*Is Answer Unreasonable?
Is Answer Complete?




4. Execute the Plan

By the time you reach this step, most of
the work has been accomplished. You have
gone from a qualitative understanding of the
problem to an equation which represents the
mathematical solution to the problem. The
next step is to obtain a numerical value for
your target quantity(ies).

Calculate the Target Quantity(ies)

When you finally have reduced the
problem to a single equation you are ready
to answer the question raised by that
problem by calculating a value for the target
quantity. Your equation consists of physics
quantities which have units. Their value
depends on their units. (12 inches is
certainly different than 12 feet.) Your final
calculation will only be meaningful if all of
the physics quantities are expressed in a
consistent set of units.

For example, suppose you want to
calculate the value of the speed of a child as
she runs a race with her older brother. The
child is given a head start of 20 ft. Her older
brother begins at the starting line of a 50 m
track. She crosses the finish line in 15
seconds. How fast is she running on
average? Using the definition of average
velocity, vave = (Xf - X0)/At. Atis 15 sec, but
what values do you put in for xf and x¢?
You would not subtract 20 from 50 because
the "20" is a number of feet, while the "50"
is a number of meters. You must first
convert the number of feet into its
equivalent number of meters (or vice versa).

Treat the units as if they were algebraic
quantities. The same units in the numerator
and the denominator give you 1 (i.e. the
units cancel).

feet
feet —

But be careful, if you have

feet + meters
feet

You cannot "cancel" the feet. For the above
example, your final equation is:

_ (xr-x0)
Vave ™ (tr - o)

(50 meters - 20 feet)
Vave = 15 s

This equation is completely correct, but you
cannot extract a useful answer as it stands.
If you want an answer in m/s, you must
convert 20 feet to meters. On the other
hand, if you want an answer in ft/s, convert
50 m to feet. Which expression you use
depends on which set of units you want for
your answer.

To change the units of a quantity
without changing it value, you can only
multiply that quantity by 1. You can
express 1 as the ratio of two types of units
whose denominator is the unit you wish to
remove and whose numerator is the unit you
wish to have. For example, to change a time
in minutes to one in seconds multiply by 1 =
(60 s/1 min). In the runner example, change
ft to m by multiplying the quantity in ft by

1 =(1m/3.3 ft):

(50m — (20ft)(%))

v =
ave (ISS)
(50m -6 m)
Vave = 15 s
44m m
Vave =5 =297



T Execute
4 1
o e\’i” ron the Plan

put in the numerical value
and units for each quantity in
your equation for the target
quantity

Y

Yes check that each additive
term of the solution has the
same type of units

* Which values (numbers with units) from
the physics description should be put into
the equation for the target quantity?

* Do you need to convert units?

*No

change additive terms to

same units by multiplying

the term to be changed by

1 expressed as a ratio of
units

Y

calculate the numerical value
of the target quantity by
combining the numbers with
arithmetic and the units with
algebra

* What ratio of units equals 1?

2 A U A

» Use a calculator for the numbers and
algebra for the units.
V * Do any units cancel?
convert units as necessary to
simplify the expression for the
target quantity in terms of an
understandable set of units
and answer the question

.

J
/ * Do we need to convert any units?
» What is the most reasonable set of
Ev a l uate t h e S 0 l U tl' on consistent units for this problem?




Example 3: You are a driver who always obeys posted speed limits. Late one night you are
driving on a country highway at 55-mph. Ahead you see a sign that says, "Curve
Ahead 200 ft, Slow to 35 mph." You are 30 feet from the sign when you first see
it. You begin to apply your brakes at the instant you pass the sign. You slow
your car down at a rate of 7-mph each second. As you reach the curve, are you
traveling within the posted speed limit?

Execute the Plan

Calculate Target Quantity(ies):

‘/v% +2axf =vyr

(ml\
(ssﬂ) 2|7h”|(200ﬁ)—vf

J3025(hﬂ) —2800K rsec)(ﬁ = v,

J3025(””) - 2800\hrsec) (f)=v;
( —
min  hr J(ﬂ) Vs

60sec 60min

Jsozs(m’) - 2800(3600)(}%) (f)=v;

(ﬂ 3 mi
J3025\ ) 2800(3600th2)(f)[5280ﬁ)

( mi mi*
J3025\—) ~1909 =5 | = vy

J3025-1909 (m ) =v/= 33%
r

You are under the speed limit of 35 mph.



COMMENTARY

Calculate Target Quantity(ies):

* Are the additive quantities in the same units?
No. Need to change seconds to hours and feet to miles.
1 = (1 min)/(60 s)
1 = (1 hr)/(60 min)
1 = (5280 ft)/(1 mi)

Final units are in mi/hr to compare with problem question.



Example 4:  Your younger brother is waiting outside for his friends to come over to play
baseball. While he waits, he becomes restless and begins to play catch with
himself with the 4-o0z. baseball. He makes a vertical toss every 3 seconds. The
ball returns to his hand two seconds after he releases it. Does the ball get as high
as the top of your two story house?

Execute the Plan
Calculate Target Quantity(ies):
1,
1= 8b

8
w1l asy

This is less than the 18 ft needed to reach the top of the house.
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Calculate Target Quantity(ies):

* Are the known values for different quantities in the final equation expressed in units,
consistent with the units you want for the target quantity?
Yes. You want value of the target quantity to have units of feet. The acceleration is given in
ft/s2 and the time is given in seconds.



Summary of Execute the Plan Physics. Now you have a solution to the
physics problem. But is it a good solution?
The result of this step 1is the Addressing that issue is the aim of the last

determination of those unknown quantities step of the problem solving strategy.
that you set out to find in the Describe the

Summary of the Physics Problem Solving Strategy

1. Focus the Problem 3. Plan the Solution
* Picture & Given Information  Start with equation which has
* Question(s) target quantity(ies)
* Approach  Identify other unknowns in
equation
2. Describe the Physics * Solve a sub-problem for each
* Diagrams & Define Physics unknown
Quantities * Check Units
» Target Quantity(ies)
* Quantitative Relationships 4. Execute the Plan

e Calculate Target Quantity(ies)

5. Evaluate the Answer
Is Answer Properly Stated?
Is Answer Unreasonable?
*[s Answer Complete?




5. Evaluate the Answer

When you reach this step, you have
calculated a quantitative solution and
answered the question posed by the problem.
You are not quite done since the goal of
problem solving is to get a correct solution.
In this final step, you evaluate your work by
checking your answer and determining if that
answer actually resolves the original problem.
The important features of evaluation can be
summarized in the following three questions:

Is Answer Properly Stated?

First, you must make sure that the value
you write down is clearly and properly
expressed. Remember that most physics
quantities have units. Check that your
answer has appropriate units. For example, a
quantity which represents a distance or
position should have units of distance (e.g.
meters, feet, miles). Some quantities can be
either positive or negative. Make sure that
you have the proper sign for the value you
obtained. Vector quantities are described
by both a magnitude and a direction. If
your answer is a vector, be sure you give both
its magnitude and direction. Also, make sure
that the direction is defined with respect to
the coordinate system used in your physics
description.

Is Answer Unreasonable?

Second, check if the answer you determined
is unreasonable in either magnitude or
direction. 1f the numerical answer is very
much larger or much smaller than the value
you would have expected from how you know
things work, then you have probably made an
error in your solution. For example, cars do
not travel at 1000 mph and atoms are much
smaller than 1mm. If your plan is logical and
clearly written, you can backtrack and fix the
mistake. A common mistake would be
algebraic or the use of inconsistent units. It is
also possible that the mathematics given in
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your plan is correct and your execution of that
plan is perfect but your application of physics
is incorrect.  This 1is actually the most
common difficulty. An erroneous physics
description usually leads to weird answers. If
your answer 1s unreasonable, check your
physics description. Are all your quantities
given unique names? Do the signs of vector
quantities agree with your coordinate system?
Are all relevant interactions represented on
your diagrams?

Another way to evaluate your answer is
to estimate the value it should have using a
simpler version of the problem. For example,
if the question is to determine how far an
object, accelerating in the same direction as
the velocity, travels over a certain interval of
time, you can ask the simpler question, "How
far would the object travel during that time if
it were moving at its original speed?"
Because the object is accelerating, the answer
to the original problem should be greater than
the answer to the simpler problem.
Sometimes a simpler problem results if you
consider extreme values of some of the
quantities in your problem. For example for
an object moving down an ramp, it should not
accelerate if the ramp were horizontal (ramp
angle equals zero). On the other hand, the
motion should be free fall if the ramp were
vertical (ramp angle equals 90 degrees).

Is Answer Complete?

Third, having determined a numerical
answer which is not unreasonable and is
properly expressed, you need to ask the
ultimate question, "Is your answer a solution
to the problem?" Sometimes the answer to
this question is trivial. For example, a
problem might ask, "What is the frictional
force on the car as it begins to move?" If the
quantity you have solved for represents the
frictional force,

then you are done. However problems often
require comparisons or judgments. In these



cases the numerical answer simply provides Determine whether your numerical value
the information on which you base your resolves the original problem, by quickly read

judgment.

what you have written in that Focus the
Problem step.

Latin comwulsions

Physics § loundering

rT—Tr u'l g

Wood shop apathy Bucic Stupidity

Classroom afflictions



Execute the Plan

\

check that answer
is properly stated

l

OK check that answer
is not
unreasonable

unreasonable

review problem solution

determine if
answer is
complete

1
J
J
J

e

A Good Solution

Evaluate the
Answer

* Do the units make sense?

* Do vector quantities have both magnitude
and direction?
If someone else read just your answer,
would they know what it meant?

* Does the answer fit with your mental
picture of the situation?

* Is the answer the magnitude you would
expect in this situation?

* Do you have any knowledge of a similar
situation that you can compare with to see
if the answer is reasonable?

 Can you change the situation (and thus
your equation for the target quantity) to
describe a simpler problem to which you
know the answer?

* Is your physics description complete?

* Are the definitions of your physics
quantities unique?

* Do the signs of your physics quantities
agree with your coordinate system?

* Can you justify all of the mathematical
steps in your solution plan?

* Did you use units in a consistent manner in
your execution?

* Is there a calculation mistake in the
execution?

Have you answered the question from the
Focus the Problem step?

* Could someone else read and follow the
solution plan?

* Are you sure you can justify each
mathematical step in the plan?



Example 3: You are a driver who always obeys posted speed limits. Late one night you are
driving on a country highway at 55 mph. Ahead you see a sign that says, "Curve
Ahead 200 ft, Slow to 35 mph." You are 30 ft from the sign when you first see it.
You begin to apply your brakes at the instant you pass the sign. You slow your
car down at a rate of 7 mph each second. As you reach the curve, are you
traveling within the posted speed limit?

Evaluate the Answer:

Is Answer Properly Stated?

Yes. A speed has been calculated and the appropriate units are miles/hour.
The positive sign has been chosen to correspond to the situation.

Is Answer Unreasonable?

No. 33 miles/hour is a typical speed for a car on a road. It is less than your
initial speed which is reasonable because you are braking.

Is Answer Complete?

Yes. The car’s speed was compared to the speed limit to answer the question.
All steps in the plan are justified.



COMMENTARY

Is Answer Properly Stated?

* Does the value of the car's velocity include proper units?
Yes, miles/hour corresponds to the units of velocity.
* Does the sign indicate the direction for the car's velocity?

It is clear from the diagram that the velocity should be positive.

Is Answer Unreasonable?

o Is the car's velocity unreasonable in magnitude?
No. The car's final velocity is less than its initial velocity, and is close to 35 mph. You have
direct experience that cars travel at that speed.

Is Answer Complete?

* Does this value of the car's velocity answer the original question?
No, but the question was answered by comparing that value to the speed limit.

*  Could someone else read and follow the solution plan? Can you justify each mathematical
step in the plan?

Yes, all steps are written down clearly and in a logical progression. The goal of each new
equation introduced is given.



Example 4: Your younger brother is waiting outside for his friends to come over to play
baseball. While he waits, he becomes restless and begins to play catch with himself with the 4
oz. baseball. He makes a vertical toss every 3 seconds. The ball returns to his hand two seconds
after he releases it. Does the ball get as high as the top of your two story house?

Evaluate the Answer:

Is Answer Properly Stated?

Yes. The position of the ball is calculated in appropriate units, feet. The
position is positive .

Is Answer Unreasonable?

No. A boy could throw a ball 16 feet straight up.

Is Answer Complete?

Yes. The position is compared to the height of the house.
All steps of the plan are justified.
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Is Answer Properly Stated?

* Does the value of the ball's maximum height include proper units?
Yes. Feet correspond to units of distance.

* Does the sign indicate the position of the ball's maximum height?

It is clear from the diagram that the sign of y1 should be positive.

Is Answer Unreasonable?
* Is the ball's maximum height unreasonable?

No. You have direct experience with people throwing balls.

Is Answer Complete?
* Does this value of the ball's height answer the original question?
No, but the comparison with the estimate of the height of a two story house is made.

*  Could someone else read and follow the solution plan? Can you justify each mathematical
step in the plan?

Yes, all steps are written down clearly and in a logical progression. The goal of each new
equation introduced is given.



Summary of Evaluate the Answer your answer. Passing these three checks
doesn't guarantee that your answer is

The evaluation performed in this step is a correct, but this step is a very efficient way

good way of preventing many mistakes by of detecting difficulties.

just taking a little bit of time to reflect on

Summary of the Physics Problem Solving Strategy

1. Focus the Problem 3. Plan the Solution
* Picture & Given Information  Start with equation which has
* Question(s) target quantity(ies)
* Approach * Identify other unknowns in
equation
2. Describe the Physics * Solve a sub-problem for each
» Diagrams & Define Physics unknown
Quantities * Check Units
 Target Quantity(ies)
* Quantitative Relationships 4. Execute the Plan

* Calculate Target Quantity(ies)

5. Evaluate the Answer
*Is Answer Properly Stated?
*Is Answer Unreasonable?
*Is Answer Complete?




FOCUS the PROBLEMPicture and Given Information

Question(s)

Approach

DESCRIBE the PHYSICS
Diagram(s) and Define Quantities

Target Quantity(ies)

Quantitative Relationships



PLAN the SOLUTION
Construct Specific Equations

Check Units

EXECUTE the PLAN

Calculate Target Quantity(ies)

EVALUATE the ANSWER

Is Answer Properly Stated?

Is Answer Unreasonable?

Is Answer Complete?

(extra space if needed)



Chapter 3

The Kinematics Approach

Introduction

Problem solving is a complex, cognitive
skill. Learning to become a better problem
solver is similar to learning to become a better
musician, skier, or chess player. The most
important factor in your improvement is
practicing the right technique. It is also true
that your progress is hindered the most by
practicing using techniques which are not the
best.

In any endeavor there are certain basic
strategies or combination of actions that form
a foundation for success. Mastering these
basics is the prerequisite for developing a
personal and creative style. It is the same for
solving physics problems. When you "focus
the problem," you decide which approach or
basic technique you will use to solve the
problem. As you gain more expertise you will
come to use these techniques in combinations
which fit your own personality and conceptual
strengths. Luckily, there are only a few very
powerful approaches to solving physics
problems.  Each centers around a basic
principle of physics such as kinematics, force,
or conservation principles. Your physics
course is designed to introduce you to these
few principles and show you some of their
applications. That instruction will not be
repeated here.  Problem solving is the
mechanism by which you practice applying
those principles to the real world. Using these
principles as approaches within the framework
of the five-step problem solving strategy will
make you a better problem solver and help
solidify your understanding of the principles.

In order to use an approach effectively,
you must be able to recognize it is useful to
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solve a particular problem. Much of this
knowledge can only be gained through
experience.  Nevertheless there are some
general guidelines which are helpful. This
booklet briefly describes three approaches
which you will encounter again and again.

This chapter discusses one of the three
approaches to physics problems, kinematics.
An outline of the approach is given in the first
section of the chapter. The second section
briefly describes how to construct a diagram
which is particularly helpful in constructing a
solution of problems using a kinematics
approach. The third section includes practice
exercises with sample solutions. The last
section presents realistic practice problems
taken from past exams.

As with any skill, it is important to begin
by practicing using the full power of the five
step strategy on simple exercises where its
power is not really necessary. This will build
up your ability to apply it to more complex
problems and finally to real world problems.

1. The Kinematics Approach

The kinematics approach wuses the
concepts of position, time, velocity, and
acceleration to determine the motion of
objects. The relationship of velocity and
acceleration to position and time is at the heart
of this approach. In this approach, you need
only determine how an object’s position varies
with time. The cause of that variation, due to
the object’s interaction with its environment,
is not relevant. There are three fundamental
kinematics equations that allow you to
determine the object’s position as a function
of time:



X; — X, .
L. v,,=———" (definition of average
-t velocity)
V=V .
II. a,, =——— (definition of average
t =t acceleration)
V. +V, : .
L v, = (relationship between
average velocity and
instantaneous  velocity =~ when  the

acceleration is constant)

Although these three general relations are all
you ever need to solve a kinematics problem,
there is another general relationship which is
made by combining them,

1
IV. x; =§a(tf —t,)7 +v,(t, —t,) +x,
(only when the acceleration is constant)

Relationships I, II, and III are fundamental.
Relationship IV is not. This relationship is
true for the motion of an object between
points ONLY when the acceleration of the
object is CONSTANT between the times you
have chosen to be the initial and final times.

All problems that can be solved using
the kinematics approach can always be solved
using only equations I, II, and III. Equation
IV can be used when it is applicable to shorten
the amount of mathematics in a problem

2. The Motion Diagram

If you decide to use a kinematics
approach to solve a problem, the motion
diagram becomes your main tool for
describing the physics. In this diagram you
reduce every object to a point at a specified
position and time. That point has a unique
velocity and acceleration, which characterize
the object, defined at that position and time.
The position is specified with respect to a
coordinate system which you choose as
convenient for the problem. The object’s
position, time, velocity, and acceleration is

drawn on the diagram at every instant of time
that might be of interest in the context of the
problem. Simple examples of motion
diagrams are given in the four examples of the
previous chapter.

For example, if you are given
conditions at the beginning of an object’s
motion and want to find out something about
its motion at some later time, the initial and
final times are clearly of interest and should
be drawn on the motion diagram. If, in
addition, the object’s acceleration changes
between the initial and final time, the time
when that change occurs is also of interest.
The object’s position, time, velocity, and
acceleration should be drawn on your motion
diagram at the instant of time of the change in
acceleration. Your choice of a coordinate
system can determine how difficult a problem
is to solve mathematically. For example, if
you have a single object in motion, it usually
simplifies your mathematics to choose a
coordinate axis in the direction of the object’s
velocity with the positive direction in the
direction of that velocity.

3. Practice Textbook Exercises

The exercises listed below are taken from
various textbooks. Practice applying the five-
step problem solving strategy to them. To
help using the strategy, we include solution
format sheets at the end of chapter 2. These
sheets mark off sections for each of the five
problem-solving steps. Each section also
includes brief prompts for the type of
information to include in the space provided.
Make copies of these sheets or sketch your
own and use them to practice solving both
simple exercises from your textbook and the
realistic problems given at the end of this
chapter. This will help the strategy become
second nature to you.

Sample solutions to the exercises are
worked out on the solution sheets in the next
section of this chapter. Do not read a solution
before you have tried to solve the exercises
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yourself. Your goals should be to understand
(a) what kind of information belongs in each
step, and (b) how one step follows naturally
from the proceeding step and leads logically
into the next step. Affer you have tried to
solve an exercise, you can check your
understanding by comparing your solution to
the sample solution. When you have resolved
any differences between the two solutions, go
on and try to solve the next exercise.

When you are confident of your
technique, apply that technique to the
exercises (usually called problems) in your
textbook.  Repetition will help you be
comfortable with basic problem solving skills
so that you will not need to think about them.
You will then be able to concentrate all of
your thought on the decisions and physics
necessary to solve a problem. Be careful that
you do not practice weak problem solving
skills. Practicing a bad technique which only
works for exercises, will not help you solve
real problems. In fact, such practice will only
make bad habits harder to break and is worse
than not practicing at all.

Problem #1: A burglar drops a bag of loot
from a window in a hotel. The bag takes 0.15
seconds to pass the 1.6-m tall window of your
room as it falls toward the ground. How far
above the top of your window is the burglar
who dropped the bag? (The bag's initial speed
is zero.) (Similar to Fishbane, Gasiorowicz

and Thornton 1993, problem 2.42)

Exercise #2: A football player kicks off from
the 40-yd line. How far will the ball travel
before hitting the ground if its initial speed is
80-ft/s and the ball leaves the ground at an
angle of 30°? (Assume that air resistance can
be ignored.) (Similar to  Fishbane,
Gasiorowicz and Thornton 1993, example 3-
7)

Exercise #3: A baseball leaves the bat of
Henry Aaron with a speed of 34-m/s at an
angle of 37° above the horizontal. The ball is
1.2-m off the ground when it leaves the bat.
To be a home run, the ball must clear a fence
that is 3.0-m high and 106-m from home plate.
(a) At what times after being hit will it reach
the height of the fence? (b) How far from
home plate will the ball be at these times? (c)
Will Henry have a home run?  Explain.
(Similar to Fishbane, Gasiorowicz and
Thornton 1993, problem 3.31)

Exercise #4: A car drives off a horizontal
embankment and lands 11 m from the edge of
the embankment in a field that is 3 m lower
than the embankment. With what speed was
the car traveling when it left the embankment?
(Similar to Jones and Childers 1992, problem
3.34)



Below is information that may be helpful in solving these problems:

Useful Mathematical Relationships:

b
For a right triangle: sin 0 = g cosO=—, tan© :% ,

c’ c’
; a a2+b2=c2, sin20+cos20=1
For a circle: C=2nR, A=nR2
4
b For a sphere: A=4nR2,V =73 7R3
-B+ \/B2-4AC
If Ax2+ Bx +C =0, then x = A
Fundamental Concepts and
Principles:
Ax Av
Vave = aavera (53 =
At €At
Ax Av
V. =1lim(At - 0)— a. = lim(At - 0)—
Instantane ous ( ) A t instantane ous ( ) A t

Under Certain Conditions:

- |

1
Xg :Ea(tf —t)" vt —t) +x,

o
I

_ v, +Vf
ave 2

A%

Useful constants: 1 mile = 5280 ft, g = 9.8 m/s2 = 32 ft/s2
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Problem #1: A burglar drops a bag of loot from a window in a hotel. The bag takes 0.15 seconds to pass the 1.6-m tall
window of your room as it falls toward the ground. How far above the top of your window is the burglar who dropped the-
bag? (The bag's initial speed is zero.) (Similar to Fishbane, Gasiorowicz and Thornton 1993, problem 2.42)

_""L'

l.ow

le

Quesion  How fav sleove Hhe top of Your window is Hhe bag Jﬂ:ﬂbecl?

approach  Use Kinewshics -- Hhis is constont accelema‘h_‘ou woetion.

Time: Tnitia| time is the instout after bag is veleased.
Middle time is the instawt bag veaches hp of window,
Fiusl ine ic the Mnstont bag veaches bafom of window.

A%Um& air vesistonce can he he_slec‘fcof.

DESCRIBE the PHYSICS

Diagram(s) and Define Quantites mohon dt“agq‘aw
-4
to e U=O4-1q JemE Wm0 O
-7 - s
‘tl){dl V,&'*"*a ﬂr" : Vl"? -’:l-'
t2, Ya th/ f{rg e V=7 =7
+y

. Target QuantityGies) [ ), a=g= 9.8m /s

Quamitatjﬁe Relationships AB = H?_- I:l' = l G

Constait accelevshon (9) I y-'cfi\f‘ec?ffa‘h At =+,-t, =0.I55

o US O & @)
ot Cto A e 50

2 2 =k €
= ge=3gte” < Ymaghs, dem29%
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W&Eﬁom U—E“—IU{%U‘_.M
Find y, e
y=3at, @O £
Find <,
At:tz"tl @ B;
Find .
2
Y=39% © E
Find Yo
Ag-"—'Hz“H: @
Yo = Ay+y,
Ay+y, =33t
'Ez = %(AB-‘-ﬂ')
t-,,-.-,l %‘(A':S‘“:!D
A{- :J_lé_ (A‘;ﬁ*'ﬂ)“”t'

=43 ([5 By -04)
4= 13 G ayg) +o-204 [ gy

=D s he-g AT (g |

gbt

§(agry) = Mg+ 3ghe

gfbt}(agw,) = Ay 3N ATy
24, Y4

ALy +2 Ay =0y SBE, apc,

Check Units Confrmaed)
R T Y O
et

EXECUTE the PLAN
Calculate Target Quantity(ies) :

_ 2 (1.8m2) (0,157
g, = (1-bw)+ Lf 26 )—-@-E-,/,-)@r,)d.e
2(9.8wy2) (0.15 5

EVALUATE the ANSWER
Is Answer Properly Stated?

(lJcS. As fxpe.c:Fec[ Y, has unrts
of length,

Is Answer Unreasonable?

No. 5,0m (just over (SF) Sounds
oout 'rl‘ak'{: o 5Pacin3 lbefween

Wwwaogws .

Is Answer Complete?

es. S.0m is the distonce above the
Top of Yfour- window Fow dhich +ie

;3;'91?::.&@& which wswers the

_ WP O
=t —[w] OK
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Problem #2: A football player kicks off from the 40-yd line. How far will the ball travel before hitting the ground if its
initial speed is 80-ft/s and the ball leaves the ground at an angle of 30°? (Assume that air resistance can be ignored.) (Similar
to Fishbane, Gasiorowicz and Thomton 1993, example 3-7)

FOCUS the PROBLEM
Picture and Given Information

‘___goft/s

o~ .-'-’— _—‘h"\
47 30° ' \\\
m——— o =P

Question(s) HOm 'E:)r t.uf" e laal( 'iTan.’_( bEPora hl'f'h'nﬁ ‘HM'; ﬁ\rauucl?

approach  (Jse Kinewatics; Uandle verfical and herizontal mehion gepau-a'f-e,[ﬂ_
-~ horizontal wetion at constant Ve‘ocf‘t'g
~- vevrtical wotiam at censtant accelevation
Time: Tuitial time ic He instant after ball i Kicked.
Fual Hime ic the fuctant ball [ands.
Acsume air vesistamce con be M&ﬂ‘&c’{‘ed_

DESCRIBE the PHYSICS -
HERNETINE PR +y motion diagraw

Xo =) 9':' Bon X'F = <

4 O qg= 3’2&/5'2 Ye :C'JP

VO:EO'F\‘-'/S LS _\t/{!i?

-E'o::o }r”f -\-\\ V .F_ |

5 ~
Yo #Jr 0 —2LNN Ky
xﬁ’t‘ xFatF

Target Quantity(ies) | X¢ ] Com?oneu&; o'p Ng -

Quantitative Relationships

Constawt velocrhy i ¥-divection so use

— o
sz_\q’x:é_’f_—_x-f-'% = V. = X¢

At 'é-F _/ﬁ_{mo ox /E‘F
Constant acceferaﬁaa Cq) in y-divection so use

20 z o _o
/9{'.:: éég) ({'.('.“';5 +V05 (ﬁp-ﬁ{j"f"ﬂ{? = O = —-éﬁ'é'_pz.{_\/aﬂ'é_‘:

Vpg=b(°€ iHB []

Vox =V, COS 3
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PLAN the SOLUTION
Construct Specific Equations

Fl'—wcj Xg

Vax = ?({-‘/&-F @

| FI'-V\CI Vox

%X:: V,Cosg @

V,Co SQ’ = KF/(—F
Find t¢

UK kmowu;

Q= _5‘: 3{4"2'} \43'61‘ @

Fud vy

VQBZVQ GWLQ @

O=-3qte*+V, sinBp

gt =v,sin 4
-tF - 2 Ve Siw.@

a
V,cos6 = X¢

g

2V¢ SEVLQ

-
\ Xp = 2w cosbsinb

[Fe]”
E&-/s z__‘ = [-Ft:(

— —

OK

9
)

Ke

e
te, Vox

By

EXECUTE the PLAN
Calculate Target Quantity(ies) '

Ke = 2(B0f/) cos (307 sin (30°)

32-[:{:/51

EV h
Is Answer Properly Stated?

%s. As expedec! Xe has units
of [wﬁ%.

Is Answer Unreasonable?

No, (72 ft is nearly 58 yards
3 gued itk o,

Is Answer Complete?

(e |72t 1s e distonce down
feld the loal( “Hravels which

swers e guestion.

(extra space if needed)



Problem #3: A baseball leaves the bat of Henry Aaron with a speed of 34-m/s at an angle of 37" above the horizontal.
The ball is 1.2-m off the ground when it leaves the bat. To be a home run, the ball must clear a fence that is 3.0-m high and

106-m from the home plate. (a) At what times after being hit will it reach the height of the fence? (b) How far from home
plate will the ball be at these times? (c) Will Henry have a home run? Explain. (Similar to Fishbane, Gasiorowicz and
Thornton 1993, problem 3.31)
EOQCUS the PROBLEM )
Picture and Given Information Bietu e drown

- — vessing he does

(s -7 - ™~ - ave a3~ home vun.
1 - -
7@/.0. : ® - -efemce
7337 2.0 Il N he.uah’f:
2w AT U e?
~ )‘-’.-‘-? ,OGM 1 =7

a) At what Himes is Hie ball at dhe height of the Jenee?
Question(s) 1) How o from Wowe plate is wae ball st Hhose +Hwes?
Approach c) Will +he ball wake 1t over +he femce for a howme vun?

Use kiwewahics; Wawndle vertical and hovizowtal maotion S'epara'['ehj.

-~ harizowtal motion at cownstant éem!% accelevaton éc,“g.&_w_[oc;m
—-vertical motion ot cowstawt (mon-zero) acceleration
Time: Tnitial Hme is Hhe instaut ball leaves “Hre bst.

Middle Hiwme is Hie iustaut ball reaches 3.0m @ofu.s vp).
DESCRIBE the PHYSICS Final tHime is the instant ball veaches 3.0m Ewiuﬂ cluwn)
Diagram(s) and Define Quantities A;fume T 'Far" — e aimﬂ i arwﬂ_cj_

Assume air resistance cawn be negled-tcl.

-+
3 __u‘:&_o'l'iov\ diagram
-£°= O x°= O HQ:LZW\
Vigp, -7 7= ¢=?  x=7 =3.0m
i S Vo ’ : 4=
b1 WY S 30N =7 %=7  4,=30m
PALEE o - _
Yo +'§'_ : : \ Vn"?q“"/s 3,;.- O
| } 4 B=37° dy=-9
xo,—to xl,-(:l Y!;t?. 3 =Y, Bw./s"-

TargelQuannty(fcs) -{;” 'éz, ;,(U )(2
Quantitative Relationships

Cous-fapd: accelerstion in both x-divechion
and g-—difec:h'on o Use

O 0 .
Ke= %g}g@ “}_/j!.*_ Vox (&'F '%S?-{}l“/’ Vor =V, Cos 4

= x-F:angf R xl.'-'v"é.)t' ) )(2:\/0,"{'1
ufz-;:(a,j)(fp ";ng'{'\faa@{-?{s"'-'jn .
=S gp - _-1_23.&;14_\,‘5& +5° & yl= _%g't‘ + VGS{“{'HD > H2=“%9t11+ve8t1+30
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PLAN the SOLUTION
Construct Specific Equations

Uhkhawns

EXECUTE the PLAN

Calculate Target Quantity(ies) -
; - t,.t, X, X SN 3
Find ¢, CESRN 't-,z’('g“z)"“(37°)-fJ@q%)six(??')+2(?._8}%)ﬁ.z...-zf
P g2 !
3":'"2-.3'&‘ +V,5'£'+ (ﬂo @ E -?_gw/s.t
Find Vi t,,.= 2015 £(-2.005) S, = 0,095)(6,=9.0%

Vng =V, SI'HQ @

Y, = —-’igf;,"-l-\/osing't, +y,
--;:3'&,‘+w,sim9 t, +y,-y, =0

+,==~V,sin8 i\) Visin0 - q(. 9/3)(9.,-5,_;

2(-3~)
oML W S A e e it ke i |
1t = Vesin@ £ 1V6in*0 +24 (y,-y,) !
[
e - :
Fiud <,

®

";jﬂ'tzt"'va-“.ﬂg t, +5o_%?_ O

r""'_"‘"""—"-'_"""""-"""""""l

91 = _'!i Slt;--" vaa—"_‘l -Hdﬂ

| t,= -V, sinb ii Vo*sint0 +24 (So"'dz)_' E
' — 1
Lo & s = o o R ]
F-IU\-C{ X\
Y, = Vax .fl @ um
Find Vox ) .
Ve =Vocos8  (5) .
R R - g e
(X, =V, cos8 %1 o
e o= o - - e — -
A
t,, €0 /63t [ [w/]? + [m/s?] (]
Cw/s?]
= [wml)t[we] [s1 Ok
[w/5s2])

X, % : Cw/sIL]Ls] = O]
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oK

X, = (342) cos37)(0.095)

( K,= qu\ )

X,= (342 osB79 07
EVALUATE the ANSWER

Is Answer Properly Stated?

Pes. As expec:fec( ‘Hie t's came out in

onits of time and the ¥% (w uaits
of distance.

Is Answer Unreasonable?

No. %, and X, ave both cEul"f:tt’_ swall.
The valves found for 4, awd X
seem plausille fr 3 basebsll.

Is Answer Complete?.
Nb.t 80;’{e- giﬂce. Yz-—-!““\ > 'Oé W, +L\e.
ball should clear the femce

r a
howe vun. This amswers he fnal
Fuestion .

(extra space if needed)
E“Cl K-g_
X2= Ny t, @
[ T e S 1
X, = Vocosg +, 1
iy W A . |
L use vesult 'E:r'
{1 'E"M tf?%fe

Netice that because Y =y, he
expressions for 4, and 4, ave
‘Hhe s_ame.’ Ths use “he p(us
$iﬁn 'ﬁ;r one time and Hhe
Minvg sigqu for Hhe sther

Choose so Hiat t, ¢ t,.



Problem #4: A car drives off a horizontal embankment and lands 11-m from the edge of the embankment in a
ficld that is 3-m lower than the embankment. With what speed was the car traveling when it left the embankment?

.Based on Jones & Childers 1992, problem 3.34

EQCUS the PROBLEM

Picture and Given Information

SEPARATELY,

AND VERTLCAL CoMPONENTS.

o+
o
1

O te= 7
Xo= O Xe=1lm
O Ye="3m

~<
-]
"

ax =0
Qy=-9g

= -9.8 m/s*
\/ox = Vo

(B'ECA\»'&E INITIAL VELOCITY
15 H-om-a.ou-u.t.)

V.p.r=?

= _ AW
By =53 P

Vs T
UEAr Gy v oy e e o a4 /--_..______‘\
Inm
P AT e Pl &
[TEN
Question(s) WHAT WAS THE INITIAL HORIZONTAL SPEED OF T™ME AR 7
Approach Use DermmiTions OF VELOUITY AND AcceLE€RATION.
TREAT VERTICAL Apd HOR (2 BNTAL HDTIDNS
ACLELERATION S oMLY “ERTICAL.
VELOCITY KAS BOTH HORIZONTAL
Lauore AR RESISTANCE,
DESCRIBE the PHYSICS ~ +Y Ay I Eetn
Diagram and Define Variables Q‘t IS COMSTAMT
V.
-EDJ XD)\jo i — t x
oy TS
‘\V.p
Qyd e, X, yf
1Y
Ve . x
Ve
Ve v
Target Variable(s) Fimp \/ :?
Quantitative Relationships
- AV A
v = E ; DepinITION V‘f = btj DeFiniTion
- T - Voy+ V.
V’c: Vox } SINCE a;:o VY-'—' -D%j

SINCE a\, CONSTANT

C-lY: aY: "'5

SINCE 0"1’: consTANT 3-12
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PLAN the SOLUTION

Construct specific equations Umr.uowuﬁ
Fino Vo Vo
@ Vo = Vo;u: Vox
Fiup Vox .
@ Vox = Vy WV
— — XF= %o
FiNo Ve @ Vy= vl
= X¢
= tr
Finp t-F' a“!’ = V.r.!.-\/o\f
'E-F - 'tp
Qg = Y&
Tk
@ -3
@ ey Viy
Finp V-{.‘Y TV, = Veyr Viy
A
s _ VQ —
@ 5 =, Vy
Fino Vy: Vo= YF-Ye
i Y te-te

‘e

Check for sufficiency
& UQKNDNHS (Vo} VDK, qw. -E{J ny; -\?Y)

G Eovatiows (T LT, T, wr )
Outline the Math Solution ;

Souve @ FoR. '\7\, AND PUT INTD

SoweE @ FoR V;:Y AND pPuUT m'ro
Sowe@ FoR. tr Avp puT mo@
Sot.vl‘:'@ FOR. \_f,c AND PUT INTD @

Sowve @ FOR. Vox AMD pUT INTD @

SDLVE@ FoR. Yo
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Por m-ro - %f)

3T
SDLVE@ —ﬂ'l':.{; —= E'_ZFF-
ty= 2¥E
!
te= [ 2y
=9

2ye 0K
CHeex UNiTs: Cm] ' Lr-\g/gs]z.z [ -[‘;ii - %’% '

[l

Calculate Target Variable(s)

= ‘;3_ — 9.8 _
vD Xg ZvE - (“H)Jm) =| 14 ""/5

J
Is Answer Properly Stated?
YES. AL STEPS FOLLOW RULES ofF ALGEBRA.
Vo 15 IN THE vniTs of oPeen (M/fs).
Is Answer Reasonable?
ComverT seeed 7o mifHR For crEck.

- - M 60s | 6OMIN_ jpOEM | s
Vb = ]'4'-’—;-- 14'?;—' IMIH* | MR ,‘-_17\_-*2.54:“

| FT N 1 M _ 31 i
2 am S280fFT — HRC /
SEEMS REALONABLE

Is Answer Complete?

YES. TuE INITIAL HORIZONTAL SPpep 15
4 &5, Teis ANSWERS THE Question .
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4. Practice Exam Problems

The following realistic problems require
you to sort through information and make
judgments about what you need to find. The
five-step problem solving strategy is the most
effective way to work through such problems.

Problem #1: You are writing a short
adventure story for your English class. In
your story, two submarines on a secret
mission need to arrive at a place in the middle
of the Atlantic ocean at the same time. They
start out at the same time from positions
equally distant from the rendezvous point.
They travel at different velocities but both go
in a straight line. The first submarine travels
at an average velocity of 20-km/hr for the first
500-km, 40-km/hr for the second 500-km, 30-
km/hr for the next 500-km and 50-km/hr for
the final 500-km. In the plot, the second
submarine is required to travel at a constant
velocity, so the captain needs to determine the
magnitude of that velocity.

Problem #2: It's a sunny Sunday afternoon,
about 65°F, and you are walking around Lake
Calhoun enjoying the last of the autumn color.
The sidewalk is crowded with runners and
walkers. You notice a runner approaching
you wearing a tee-shirt with writing on it.
You read the first two lines, but are unable to
read the third and final line before he passes.
You wonder, "Hmm, if he continues around
the lake, I bet I'll see him again, but I
anticipate the time when we'll pass again."
You look at your watch and it is 3:07 p.m.
You recall the lake is 3.4 miles in
circumference. You estimate your walking
speed at 3 miles per hour and the runner's
speed to be twice your walking speed.

Problem #3 You are part of a citizen's group
evaluating the safety of a high school athletic
program. To help judge the diving program
you would like to know how fast a diver hits
the water in the most complicated dive. The
coach has his best diver perform for your

group. The diver, after jumping from the high
board, moves through the air with a constant
acceleration of 9.8-m/s2. Later in the dive,
she passes near a lower diving board which is
3.0-m above the water. With your trusty stop
watch, you determine that it took 0.20 seconds
to enter the water from the time the diver
passed the lower board. How fast was she
going when she hit the water?

Problem #4: Just for the fun of it, you and a
friend decide to enter the famous Tour de
Minnesota bicycle race from Rochester to
Duluth and then to St. Paul. You are riding
along at a comfortable speed of 20-mph when
you see in your mirror that your friend is
going to pass you at what you estimate to be a
constant 30-mph. You will, of course, take up
the challenge and accelerate just as she passes
until you pass her. If you accelerate at a
constant 0.25 miles per hour each second until
you pass her, how long will she be ahead of
you?

Problem #5: The University Skydiving Club
has asked you to plan a stunt for an air show.
In this stunt, two skydivers will step out of
opposite sides of a stationary hot air balloon
5,000 feet above the ground. The second
skydiver will leave the balloon 20 seconds
after the first skydiver but you want them to
both land on the ground at the same time. The
show is planned for a day with no wind so
assume that all motion is vertical. To get a
rough idea of the situation, assume that the
skydiver will fall with a constant acceleration
of 32-ft/s2 before the parachute opens. As
soon as the parachute is opened, the skydiver
falls with a constant velocity of 10-ft/s. If the
first skydiver waits 3.0 seconds after stepping
out of the balloon before opening his
parachute, how long must the second skydiver
wait after leaving the balloon before opening
his parachute?

Problem #6: You are sitting around with a
friend working physics problems while
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watching Wheel of Fortune on TV. You know
that your TV set uses a beam of electrons to
form the picture on the screen. You hope the
presence of this unintentional product of basic
physics research will inspire your physics
thought (at least that's what you told your
roommate). During a lull in the "action," you
wonder how long it takes for the electron to
get from the far end of the 2 1/2 foot long
picture tube to the screen. Each electron starts
essentially at rest from a hot filament at the
rear of the picture tube and then undergoes a
constant acceleration in a high voltage region
of the picture tube. You guess that this high
voltage region is the narrow straight section of
the picture tube, about 2 inches in diameter,
containing the filament at one end. This
straight section is a 1 foot long cylinder before
the picture tube flares out to match the 21 inch
screen. When an electron leaves the high
voltage region and travels straight to the
screen, it no longer accelerates. It makes a
flash of light when it finally hits the screen.
Your friend remembers reading that the
accelerating voltage is 5 kilovolts and that,
just before it hits the screen, the electron is
traveling at 1/10 the speed of light. You wish
that you could remember the speed of light
when your roommate comes in and tells you
that light travels 1 foot per nanosecond and

"everyone" knows that a nanosecond is 1079
seconds. Now, before Vanna flips the next
letter, what's the answer?

Problem 7: While on a vacation to Kenya,
you visit the port city of Mombassa on the
Indian Ocean. On the coast you find an old
Portuguese fort probably built in the 16th
century. Large stone walls rise vertically from
the shore to protect the fort from cannon fire
from pirate ships. Walking around on the
ramparts, you find the fort's cannons mounted
such that they fire horizontally out of holes
near the top of the walls facing the ocean.
Leaning out of one of these gun holes, you
drop a rock which hits the ocean 3.0 seconds
later. You wonder how close a pirate ship
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would have to sail to the fort to be in range of
the fort's cannon? Of course you realize that
the range depends on the velocity that the
cannonball leaves the cannon. That muzzle
velocity depends, in turn, on how much
gunpowder was loaded into the cannon.

(a) Calculate the muzzle velocity
necessary to hit a pirate ship 300 meters from
the base of the fort.

(b) (To determine how the muzzle
velocity must change to hit ships at different
positions, make a graph of horizontal distance
traveled by the cannonball (range) before it
hits the ocean as a function of muzzle velocity
of the cannonball for this fort.

Problem #8: You are on the target range
preparing to shoot a new rifle when it occurs
to you that you would like to know how fast
the bullet leaves the gun (the muzzle velocity).
You bring the rifle up to shoulder level and
aim it horizontally at the target center.
Carefully you squeeze off the shot at the target
which is 300 feet away. When you collect the
target you find that your bullet hit 9.0 inches
below where you aimed.

Problem #9: Tramping through the snow this
morning, you were wishing that you were not
here on your way to this test. Instead, you
imagined yourself sitting in the Florida sun
watching winter league softball. You have
had baseball on the brain ever since the Twins
actually won the World Series. One of the
fielders seems very impressive. As you
watch, the batter hits a low outside ball when
it is barely off the ground. It looks like a
home run over the left center field wall which
is 200-ft from home plate. As soon as the left
fielder sees the ball being hit, she runs to the
wall, leaps high, and catches the ball just as it
barely clears the top of the 10-ft high wall.
You estimate that the ball left the bat at an
angle of 30°. How much time did the fielder
have to react to the hit, run to the fence, and
leap up to make the catch?



Problem #10: Your group has been selected
to serve on a citizen's panel to evaluate a new
proposal to search for life on Mars. On this
unmanned mission, the lander will leave orbit
around Mars falling through the atmosphere
until it reaches 10,000 meters above the
surface of the planet. At that time a parachute
opens and takes the lander down to 500
meters. Because of the possibility of very
strong winds near the surface, the parachute
detaches from the lander at 500 meters and the
lander falls freely through the thin Martian
atmosphere with a constant acceleration of
0.40g for 1.0 second. Retrorockets then fire to
bring the lander to a softly to the surface of
Mars. A team of biologists has suggested that
Martian life might be very fragile and
decompose quickly in the heat from the

lander. They suggest that any search for life
should begin at least 9 meters from the base of
the lander. This biology team has designed a
probe which is shot from the lander by a
spring mechanism in the lander 2.0 meters
above the surface of Mars. To return the data,
the probe cannot be more than 11 meters from
the bottom of the lander. Combining the data
acquisition requirements with the biological
requirements the team designed the probe to
enter the surface of Mars 10 meters from the
base of the lander. For the probe to function
properly it must impact the surface with a
velocity of 8.0-m/s at an angle of 30 degrees
from the vertical. Can this probe work as
designed?
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Chapter 4

The Dynamics Approach

Introduction

Dynamics is an approach which describes
how the motion of an object is changed by its
interactions with other objects. The first
section of this chapter discusses approaches to
physics problems using concepts of dynamics.
The second section describes how to use free-
body and force diagrams to describe the
physics of these problems. The third section
includes practice exercises from textbooks,
with sample solutions.  Finally, the last
section provides you with practice problems
from past exams.

1. The Dynamics Approach

An interaction always involves two
objects, an object which exerts the force and
the object on which the force acts. In
addition, there are only a few types of
interactions which occur in nature, and they
are usually easily identified. @ The most
common types of interactions are either
contact, gravitational, electric, or magnetic.
Every interaction results in a force on an
object in a specified direction which can be
thought of as either a push or a pull. In
summary, any force must be expressible in the
following statement:

The (type of interaction )
(push/pull ) exerted by the (object )
on the (different object ) .

For example, your weight is the
gravitational pull exerted by the Earth on you.
If you make sure that every force can be
expressed by this general statement it will
help you identify the forces on an object.
Even more importantly, it will help you reject
forces which do not exist.

The acceleration of an object is related to
the sum of all of the forces which act on that
object. The mass of the object is the factor
which relates them. Mathematically speaking:
> F = ma. The equation states that the
acceleration (a) of an object is directly
proportional to the sum of the forces (3 F)
which act on that object. The mass (m) of that
object determines how much the acceleration
changes as XF changes. Note that bold type
designates vectors. When you have a problem
which involves several objects and several
interactions, remember that the motion of a
given object is affected only by the forces
exerted on that object.

Newton's Third Law gives an important
relationship between forces acting on the two
objects involved in some interaction.
Newton's Third Law states that whenever one
object (A) exerts a force on another object
(B), the second object (B) exerts a force of
equal magnitude on the first object (A), but in
the opposite direction. Every force has a third
law pair which acts on a different object. As
an example, consider again the force which
you call your weight. Your weight is the
gravitational pull that the Earth exerts on you.
The corresponding force, its Third Law pair,
is the gravitational pull exerted by you on the
Earth. Although they are equal in magnitude
and opposite in direction, such Third Law
pairs NEVER ADD UP TO ZERO. They
cannot be added together because each force
acts on a different object. The two
gravitational forces in the example act on
different objects. One force acts on you, the
other force acts on the Earth.

Sometimes to solve a problem it can be
useful to combine the approaches of dynamics



and kinematics. For example, if you want to
determine the subsequent motion of an object
due to the forces exerted on it, you can use
forces to determine the object's acceleration.
Using that acceleration with kinematics, you
could determine the object's subsequent
position and velocity. Conversely, if you can
describe an object's motion, you can use
kinematics to determine its acceleration at
important times. Using those accelerations
and dynamics, you could determine the sum of
the forces acting on that object.

2. Free-body and Force Diagrams

Suppose you have made a sketch of the
problem situation and decided that the best
approach to solve the problem is to apply
>'F = ma to a particular system. The system
is usually a single object (e.g., a box, a car).
However, if two or more objects are attached
and/or move together (e.g., a car and its
driver), it may be more convenient to define
the system as all of the objects that are
moving together.

To solve the problem, you must determine
what objects are interacting with the system
object(s), the type of interaction, and the
direction and relative magnitudes of the
resulting forces acting on the system. Then
you must represent the forces in a convenient
way so they can be easily added. There are
three drawings that are helpful in this process.
(1) Your sketch of the problem situation helps
you identify the most convenient system of
interest and the objects in the environment
that interact with that system. (2) The free-
body diagram isolates the system of interest
and helps you determine the qualitative
behavior of that system in terms of the
direction and relative magnitudes of the forces
acting on it. (3) The force diagram represents
the forces acting on the system of interest as
mathematical vectors that can be conveniently
added.

Using Your Sketch
To determine the forces acting on a

system, you must first distinguish between the
object(s) in your system and the objects in the
system's environment. Then determine the
objects in the environment that are actually
interacting with the system object(s), and the
type of interaction. Every force on a system
requires that an identifiable object in the
system's environment has an identifiable type
of interaction with the system in an
identifiable direction. If a force really exists,
it can be described in the following form:

Force A is the (type of interaction) pull or
push exerted by (an environmental object)
on the (system object or objects).

For example, one force acting on a ball
after is thrown up is the gravitational pull
exerted by the Earth on the ball.

Use your sketch to choose the system you
wish to consider to solve your problem and
outline it. Look for two general categories of
interactions with the object(s) in your system:
(1) short-range interactions caused by the
physical contact between the objects in the
environment and the system object(s), and (2)
long-range (action-at-a-distance) interactions
between objects in the environment and the
system object(s).

Look along the boundary of your system
for objects in the environment that touch the
system.  Only environmental objects that
actually touch the system can cause contact
forces. For example, one type of contact
interaction occurs when an environmental
object such as a rope pulls on a system object
such as a car. Long-range (action-at-a-
distance) forces are caused by an object in the
environment that does not have to be touching
an object in the system, but nevertheless
interacts with the system. A common
example of a long-range interaction is the
gravitational attraction between a system
object (e.g., a ball) and an environmental
object (e.g., the Earth). When the
environmental object is a planet (such as the
Earth), the gravitational force on the system




object is called the "weight" of object.

As an example, consider a problem in
which two attached boxes are accelerated
across the floor by the pull of a rope. Since
the boxes move together, we can define the
system as the two boxes.

System:
Box 1 & Box 2
Environment
touches here

For this system, the floor touches the base
of the boxes and exerts two types of contact
forces on the boxes:

Fn1 is the contact push exerted by the floor
on Box 1 (normal force).
Fn2 is the contact push exerted by the floor
on Box 2 (normal force).
Fk1 is the contact push exerted by the floor
on the Box 1 (kinetic frictional force).
Fx2 is the contact push exerted by the floor
on the Box 2 (kinetic frictional force).
The rope also touches the system:
P is the contact pull exerted by the rope on
the boxes (tension force).
There are also two long-range forces:
W is the gravitational pull exerted by the
Earth on Box 1 (the weight of the Box 1).
W, is the gravitational pull exerted by the
Earth on Box 2 (the weight of the Box 2).
This description can be simplified by
considering the system as a single "object."
Then
Fy is the contact push exerted by the floor
on the system (normal force: Fn = Fnp +
FNn2).
Fk is the contact push exerted by the floor
on the system (kinetic frictional force:
Fk =Fx1 + Fi).
P is the contact pull exerted by the rope on

the boxes (tension force).

W is the gravitational pull of the Earth on

the system (weight of system: W = Wp +

W»).
If you cannot identify the environmental
object that is exerting the force on the system
object(s) and determine the type of
interaction, then the force does not exist. For
example, a proposed "force of motion" acting
on the accelerating boxes is not a real force
because it is impossible to identify the specific
environmental object exerting this proposed
force, and motion is not a type of interaction.

Drawing a Free-body Diagram

The next step is to use a diagram to
represent the qualitative behavior of the
system. For force problems, this is achieved
by representing both the directions and the
relative magnitudes of the forces acting on a
system by arrows. If you drew force vectors
on your sketch, it would be easy to confuse
the forces exerted by the environmental
objects on the system with the forces exerted
by the system on the environmental objects.
To avoid this confusion, we will draw "free-
body" diagrams. First, draw a separate picture
of only the object(s) in the system. Now
instead of drawing the environmental objects
which are interacting with the system
object(s), draw arrows representing the forces
the environ-mental objects exert on the
system. Label the force arrows with the same
symbols you used to describe the forces.

An example of the free-body diagram for a
system of two boxes pulled by a rope across
the floor is shown on the next page. The
direction of each force can be determined by
considering the type of interaction:

Contact Forces: When a rope pulls on a
system, the force is always directed along the
rope. When the surface of an environmental
object is pressed against the system, the
normal force (push) is always perpendicular to
the surface of contact. The kinetic frictional
force on a system is always parallel to the
surface in contact with the surface of the
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environmental object. Its direction is always
opposite to the direction that the system
moves relative to the environmental object.

| ——» P
--— F

Long-range Forces: A gravitational
interaction between a system object and an
environmental object always results in a force
on the system object directed towards the
center of mass of the environmental object.

To make sure that all appropriate forces
are included on your diagram with the correct
qualitative behavior, draw the forces on the
system where the interaction occurs. Look at
the system boundary on your sketch to
determine the contact interaction points or
surfaces. For pushing (e.g., Fn and F), place
the head of an arrow representing the force at
the approximate point or surface where the
force acts on the system. For pulling forces
(e.g., P and W), place the tail of an arrow
representing the force at the approximate point
where the force is acting. For long-range
(action-at-a-distance) forces (e.g., W), place
the tail of the arrow at the appropriate center
of the system (e.g., the center of mass).

Finally, use your knowledge of how forces
affect the motion of objects (3 F = ma) to
determine the relative magnitudes of the
forces on your system. Look back at your
sketch and given information of the problem
situation (Focus the Problem) to check how
your system is moving (or how you expect the
system to move). You may have to draw a
motion diagram to determine the direction of
the acceleration. Then try to make the length
of the force arrows representative of the
relative magnitudes of the forces that would
be necessary for the system to move as

expected. For example, since the system of
two boxes shown above is not accelerating in
the vertical direction, the forces in the vertical
direction (Fn and W) should be balanced --
equal in magnitude but opposite in direction
(but remember these two forces are not a third
law  pair). The boxes are, however,
accelerating to the right, so the forces in the
horizontal direction are not balanced. The
arrow representing the pull of the rope (P) is
longer than the arrow representing the
frictional push of the floor (Fk) on the system.

Drawing a Force Diagram

The next step is to apply vector
mathematics using a force diagram. Now only
the forces are drawn as vectors originating at
the origin of a coordinate system. First draw a
set of coordinate axes. It is wusually
convenient to orient one axis in the direction
of motion and the other axis perpendicular to
the direction of motion. Draw the force
vectors with the tails at the origin of the axes
and the heads pointing in the appropriate
directions. If more than one force acts in the
same direction, draw the force vectors slightly
offset from the origin so you can see them.

The force diagram for the system of two
boxes pulled by a rope is shown below.

Ty

Fy P ix

W

You can now apply Newton's Second Law in
each coordinate direction:

> Fx=may and } Fy=may
If one or more forces are at an angle to the
coordinate axes, use trigonometry to
determine the components of the forces in the
x and y directions.



EXAMPLE 1: An explorer in Greenland wants to pull her sled up a hill. She estimates that
the hill makes an angle of 15 degrees with the horizontal. Her loaded sled, which is at rest
halfway up the hill, weighs 200-1bs. Before she left on the expedition, she determined that the
coefficient of static friction between snow and her loaded sled is 0.30, and the coefficient of
kinetic friction is 0.20. Her rope is rated for a maximum tension of 100-Ibs. Will she be able

to pull her sled up the hill?

Draw a sketch of the problem situation and a free-body and force diagram of the loaded sled.
Cover the right side of the page and try each step before looking at the answer.

1. Make and Use a Sketch: Draw a sketch
of the problem situation and then outline with
a heavy line the system of interest. Examine
the system boundary and identify the
environmental objects that have contact
interactions with the system. Identify the
environmental objects that have long-range
interactions with the system object(s).

Earth = long-range
environmental object

System:
sled and load

2. Identify and Describe the Forces:
Choose a symbol for each of the forces acting
on the system caused by either the contact or
long-range interactions. Describe in words
each force, using the following form:

X is the (type of interaction) pull or
push exerted by (environmental
object) on the (system object(s)).

Environment
touches here
Contact Forces:

Fy is the contact push exerted by the snow on
the sled (normal force).
Fs is the contact push exerted by the snow on
the sled (static frictional force).
T is the contact pull exerted by the rope on the
sled.

Long-Range Forces:

W is the gravitational pull exerted by the Earth
on the sled (weight of sled and load).

3. Draw a Free-body Diagram: Make a
separate picture of the system. Draw an
arrow for each force acting on the system and
label each arrow with the symbol you used in
Step 2. Make the length of the force arrows
representative of the relative magnitudes of
the forces that would be necessary for the
system to move as expected.

T
/
FS
w
FN

4. Draw a Force Diagram: Draw a
coordinate system. It is usually convenient
to orient one axis in the direction of motion
and the other axis perpendicular to the
direction of motion. Draw each force vector
originating from the origin of the coordinate
system.




EXAMPLE 2: You are investigating a train accident that occurred when two empty train
carriages were being moved to another track. The engineer stated that the train was traveling
at 45 miles per hour when he made an emergency stop in 30 seconds. Your boss suspects a
faulty coupling between the engine and the first carriage. She knows you are taking a physics
course, so she asks you to calculate the force exerted by the engine on the first carriage during
the emergency stop. The train manufacturer claims that each carriage weighs 20,000-1bs, and
the maximum coefficient of kinetic friction between the wheels and the track is 0.55.

Draw a sketch of the problem situation and a free-body and force diagram of the first carriage.
Cover the right side of the page below and try each step before looking at the answer.

Earth = long-range

problem situation and then outline with a : :
environmental object

heavy line the system of interest. Examine
the system boundary and identify the
environmental objects that have contact
interactions with the system. Identify the
environmental objects that have long-range
interactions with the system object(s).

1. Use Your Sketch: Draw a sketch of the System:
Carriage #1

2. Identify and Describe the Forces: : Contact Forces:

Choose a symbol for each of the forces acting FN1 is the contact push exerted by the track on
on the system caused by either the contact or carriage ##1 (normal force),

long-range interactions. Describe in words Fik2 is the contact push exerted by the track on

h fi . he followine fi . carriage #1 (kinetic frictional force).
cach force, using the tollowing form: FE is the contact push exerted by the engine

X is the (type of interaction) pull or on carriage #1. '
push exerted by (environmental F»7 is the contact push exerted by carriage #2

object) on the (system object(s)). on carriage #1.
(s Ject(s)) Long-Range Forces:

Wj is the gravitational pull exerted by the
Earth on Carriage #1 (weight of the carriage).

3. Draw a Free-body Diagram: Make a

separate picture of the system. Draw an F F
arrow for each force acting on the system and 3L E
label each arrow with the symbol you used F
above. Make the length of the arrows w, k1
representative of the relative magnitudes of E

the forces that would cause the system to
move as expected.

4. Draw a Force Diagram: Draw a
coordinate system. It is usually convenient
to orient one axis in the direction of motion
and the other axis perpendicular to the
direction of motion. Draw each force vector
originating from the origin of the coordinate
system.




EXAMPLE 3: You are investigating a train accident that occurred when two empty train
carriages were being moved to another track. The engineer stated that the train was traveling
at 45 miles per hour when he made an emergency stop in 30 seconds. Your boss suspects a
faulty coupling between the engine and the first carriage. She knows you are taking a physics
course, so she asks you to calculate the force exerted by the engine on the first carriage during
the emergency stop. The train manufacturer claims that each carriage weighs 20,000-1bs, and
the maximum coefficient of kinetic friction between the wheels and the track is 0.55 when the

brakes are applied.

Draw a sketch of the problem situation and a free-body and force diagram of the second

carriage.
answer.

Cover the right side of the page below and try each step before looking at the

1. Make and Use a Sketch: Draw a sketch
of the problem situation and then outline with
a heavy line the system of interest. Examine
the system boundary and identify the
environmental objects that have contact
interactions with the system. Identify the
environmental objects that have long-range
interactions with the system object(s).

Earth = long-range
environmental object

System:
Carriage #2

Environment
touches here

oo

2. Identify and Describe the Forces:
Choose a symbol for each of the forces acting
on the system caused by either the contact or
long-range interactions. Describe in words
each force, using the following form:

X is the (type of interaction) pull or
push exerted by (environmental
object) on the (system object(s)).

Contact Forces:
Fnp2 is the contact push exerted by the track on
carriage #2 (normal force).
Fk2 is the contact push exerted by the road on
t carriage #2 (kinetic frictional force).
F12 is the contact push exerted by carriage #1
on carriage #2.

Long-Range Forces:
W, is the gravitational pull exerted by the
Earth on Carriage #2 (weight of the carriage).

3. Draw a Free-body Diagram: Make a
separate picture of the system. Next draw an
arrow for each force acting on the system and
label each arrow with the symbol used above.
Make the length of the arrows representative
of the relative magnitudes of the forces that
would be necessary for the system to move as
expected from the given problem situation.

Note: F12 is the Third Law pair of F21 in
Example 2, so its arrow is drawn the same length,
but opposite direction

4. Draw a Force Diagram: Draw a
coordinate system. It is usually convenient
to orient one axis in the direction of motion
and the other axis perpendicular to the
direction of motion. Draw each force vector
originating from the origin of the coordinate
system.

+y
F12 FN2
+X
F
k2 |w,




EXAMPLE 4: (try this one on your own!) You are on your way to the University when your
car breaks down. A tow truck weighing 4000-1bs comes along and agrees to tow your car, which
weighs 2000-1bs, to the nearest service station. The driver of the truck attaches his cable to your
car at an angle of 20 degrees to the horizontal. He tells you that his cable has a strength of 500-
Ibs and that he plans to take 15 seconds to tow your car at a constant acceleration from rest in a
straight line along the flat stretch of freeway until he reaches the speed limit of 55 miles per

hour.

If rolling friction behaves like kinetic friction, and the coefficient of rolling friction

between your tires and the road is 0.10, determine if the driver can carry out his plan.

3. Practice Textbook Exercises

The exercises listed below are taken from
textbooks. Use the five-step problem solving
strategy to solve them. It is the most effective
way to work through new problems, and it
will be a useful tool on exam days. To make
it easier to practice using the strategy, we have
included solution format sheets at the end of
Chapter 2. These sheets mark off sections for
each of the five problem-solving steps. Each
section also includes brief prompts for the
type of information to include in the space
provided. Make copies of these sheets or
sketch your own and use them to practice
solving problems. This will help the strategy
become second nature to you.

Example solutions to the problems are
worked out on the solution sheets, using the
problem solving strategy. Do not read the
solution before you have tried to solve the
exercise yourself. Your goals should be to
understand (a) what kind of information
belongs in each step, and (b) how one step
leads logically into the next. Affer you have
tried to solve an exercise, you can check your
understanding by comparing your solution to
the sample solution. When you have resolved
any differences between the two solutions, go
on and try to solve the next exercise.

Exercise #1: A car exerts a forward force on
a trailer, and the trailer exerts an equal
magnitude backward force on the car.
Construct a force diagram for each vehicle
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and explain what force causes the car to
accelerate when pulling the trailer. (Similar to
Fishbane, Gasiorowicz and Thornton 1993,
problem 4.29)

Exercise #2: Consider two blocks connected
by a horizontal rope. The pair of blocks are
being accelerated across a horizontal
frictionless surface by another rope which is
attached to one of the blocks and slopes
upward at some angle 0 with respect to the
horizontal surface. The blocks have equal
mass. Construct force diagrams for each
block. (Similar to Fishbane, Gasiorowicz and
Thornton 1993, problem 4.14)

Exercise #3: A rope connected to a 50-kg
sled pulls it along a frictionless sheet of ice.
The tension in the rope is 100-N and the rope
is oriented at an angle of 30° above a line
drawn parallel to the ice. Calculate the
horizontal acceleration of the sled. (Similar to
Fishbane, Gasiorowicz and Thornton 1993,
problem 4.14)

Exercise #4: Two blocks are connected by a
cable strung over a pulley, which is mounted
at the top of an incline. The 10-kg block
hangs over the edge of the incline. The 20-kg
block rests on the frictionless incline. The
"toe" of the incline is at an angle of 37° with
respect to the horizontal. Find the magnitude
of the acceleration and the tension in the
cable. (Similar to Fishbane, Gasiorowicz and
Thornton 1993, problem 5.14)



Exercise #5: A 3.0-kg box sits on a
horizontal surface of your car seat as you
drive at a speed of 20-m/s. The coefficient of
friction between the box and the seat is 0.50.
You apply the brakes to stop the car.
Calculate the shortest possible stopping
distance so that the box does not start to slide
off the seat. (Similar to Fishbane,
Gg%)i)orowicz and Thornton 1993, problem
5.

Exercise #6: A 20-kg crate sitting on a
horizontal floor is attached to a rope that pulls
37° above the horizontal. The coefficient of
static friction between the crate and the floor
is 0.50. (a) Construct a force diagram for the

crate. (b) Determine the least rope tension that
will cause the crate to start sliding. (Similar
to Fishbane, Gasiorowicz and Thornton 1993,
problem 5.29.)

Exercise #7: Four ions (Na™, Cl-, Na* and
CI~ ) each separated from its neighbors by 3.0

x 10°10-m are in a row. The charge of a
sodium ion is +e and that of a chlorine ion is -
e. Calculate the force on the chlorine ion at
the end of the row due to the other three ions.
(Similar to Fishbane, Gasiorowicz and
Thornton 1993, problem 22.29)

Below is information that may be useful in solving these problems

Useful Mathematical Relationships:

a
b
B+ +/B2-4AC
If Ax2+Bx+C=0, thenx = A

Fundamental Concepts and Principles:
AXx

_Av

) ) ) a b a
For a right triangle: sin 0 = » Cos 0= o > tan 0= b

aZ2+b2=c2, sin20+cos20=1

For a circle: C=2nR, A = nR2
4
For a sphere: A =4nR2,V = 3 nR3

V., =— =— > F,=ma
ave At average At T r
) AX Av
V. = lim(At = 0)— a. = lim(At —» 0)—
instantane ous ( ) A t nstantane ous ( ) A t
Under Certain Conditions:
Xf:%a(tf_ti)2+vi(tf_ti)+xi F=uFy F_Gmlgnz
r
2
V. +V
a=L v, =t F <p Fy F =k, 12
T 2 r

Useful constants: 1 mile = 5280 ft, g=9.8 m/s2 =32 ft/s2, G=6.7 x 10-11 N m2/kg? ,
ke=9.0x 109N m2/C2,e=1.6x1019C



Problem #1: A car exerts a forward force on a trailer, and the trailer exerts an equal magnitude backward force on the car.
Construct a force diagram for each vehicle and explain what force ¢auses the car to accelerate when pulling the trailer. '
(Similar to Fishbane, Gasiorowicz and Thornton 1993, problem 4.29)

Picture and Given Information

—d
V.
v=0 Y
- e e I e R LA RLEEP

_ Construct force Jia%rms G car and trailer.
Question(s) (What fovce causes +he cay to accelevate?

Approach  (Jge c{gvxamfcs. (Nt’-w’i'ou's' 2ed and zcd Laws)

Determine 3l Brees achng on car awd *railer fepara‘f'elg.
Sum the focces acting on the car o explain its accelevstion.

DESCRIBE the PHYSICS
Diagram(s) and Define Quantities

free— baJ% du‘a_g'rm Grai(er)

Far
) M F;T t frictionsl fovee of
Wi P Fr aiv on trailev
F F;-r s Lrictional foree of
T voad ow trailev
focce diagram G’\"ai[e.r) For i contact (Pulling) force
4 of cac on frailer
lF Wy : gravitational fovee of
£ " | Earth ow trailer
. :r_ E\l‘r: normal CCon'i‘ad:) force
.—<_T'—""—+" € read ow tvailer
fer Fer
'WT'
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free-bo dy diageawm (car)

EC‘- ‘F‘ri'c'*“l'ona‘ ‘Fmr‘ce. o‘F
. 7\ Eac. aiv on car
4._.1‘:___ r‘_ EQCF:‘FY‘fc"'l‘onal fovce o‘F
- voad (backward).on
RcB front wheels of car
We Fe Feca: Trictional fovee of
voad Chrwacd!) on
vear wheels of car
- (see d:‘s:u;sfnn be)lo-ul:i)
¢’ Contact (pullin rce
Mﬁw (C"""'") ! of 'hrailerFon czw‘
+y W, : geavitational force of
l F Eacrth on cav
. Ne Fue : normal (contact) fovee
Ee & of vroad ow car
—— — +X
F;'c FI'-!CB

T

Discussion o‘F 'ches oW Ccav amzl its acce,le.r'a‘h‘on.

The vertical forces on Hie car ave its weight (We) and

the vormal ‘Gnrce (F,};) These sum To ero So fheve (s

no net fovrce and hence wno accelershon vertically.
'ﬂwre awe 'Gur l\ori%ow[‘a[ ‘Forces cw\- ‘HAE. cax . I ‘Hie —-X=—

direchion there is air friction (ﬁlc\), friction with Hhe ¢ oaJ

on +I,\¢'Frow'{? wheels (Fgcgj, aund e 'F;rrce of +he Hrailer
(F..) which is the Newhws 3% [3w pair o Fp. Assuming

3 reac- wheel drive car, the vear wheels wmake vse of fric-
tion with +he toad fo push backward on Jhe voad. The
veaction o His force on Hie veoad is 3 Aricfional Rrce
Rcward on He carts vese wheels (F,_Q,_B). The cav will
accelerste forwavd whenever Free exceeds the Sum o

F';c. FQCF; and Fr:r, fesu[‘ﬁ‘uj w2 wet force ow Hhe car
iw Hhe +x-divection.



Problem #2: Consider two blocks connected by a horizontal rope. The pair of blocks are being accelerated across a
horizontal frictionless surface by another rope which is attached to one of the blocks and slopes upward at some angle 6 with
respect to the horizontal surface. The blocks have equal mass. Construct force diagrams for each block. (Similar to
Fishbane, Gasiorowicz and Thornton 1993, problem 4.14)

------------------------------------------------------------------------------------

Picture and Given Information

T e s o
Yepe [a)

A | E F \E

777 P r 727 s
’ﬁ'f ctionless surtace

What are Hhe fovces on each block?
appoach  Use dynawmies, DPraw 'ﬁ'ee.-bmlg elu'agraw.s and fovce
diagr;ms $fr eaclh block.
Assume wmassless vopes => tewsion is Constaut
‘Hwoueahouf eacla vape .

Question(s)

DESCRIBE the PHYSICS
giagram(s) and Define iluamities
'Fvu.—bnc_:l_g diagramﬁ
T
T, : g
Block A l —t 1;-- A{-'-e- Block B
F,;h ¢Wh Fr.ia f' We
{’Qf‘ce digﬂrms
+4
Block A F;va T, Block B
+x +x
Wﬁ

Fun * ovwal (““'["aﬁ{) force Fog: NOrmal ém‘('ac'l:) force

4-12

of surface ow block A
W,: geavitatiowa| force of
EavxHr on Llock A
'T, : contact ‘Fbw"ce d‘F f‘oFe
| on block A

of surface ow block B
WB'-QTSI\'H'E'HGME{ ‘grce_ of
Earthh on LWlock B
'E,T;ICOu'E‘ac‘{' "Fbv:‘Ce_ O'F vope

L2 own block B



GREAT HAVE IO GET HIT
ON THE HEAD TO LEARN
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Problem #3: A rope connected to a 50-kg sled pulls it along a frictionless sheet of ice. The tension in the rope is 100-N
and the rope is oriented at an angle of 30" above a line drawn parallel to the ice. Calculate the horizontal acceleration of the
sled. (Similar to Fishbane, Gasiorowicz and Thornton 1993, problem 4.14)

Castions) (What is +he hovizowtal accelevation of the gled?

Approach  (Use c!gnaml‘cs, Find the horizowtal and vertical forees
ar:h‘ug on ‘the sled. The net hovizontal force will lead

To 3 horizontal accelevation.
Since ice is slippery, assume feiction can be neglected.

DESCRIBE the PHYSICS
Diagram(s) and Define Quantities
reebody diage focce cliagram
+y
T T Cm»."l'ac.'l' “Earce ..r-
£ led
(6} folbe on ¢ F B
F 4 W:gravitationsl fovee L +X
¢ W Esrth ow sled
F V\orm‘al "Fbrce. W
o'F ice on sled
T=I100N
Target Quantity(ies) | Sx
Quaiitative Relationships
Z F =T =wma,
Z: F; - h?/' 1_3 —-TSlne
W= ““3
. Ta +F - ma =



PLAN the SOLUTION
Construct Specific Equations

Check Units

N1 _ Dka we
Lkal Ckq]

(914 kHOLUHS

B
i

=[w&2] Ok

EXECUTE the PLAN
Calculate Target Quantity(ies)

= 100 N COS(?CJ’)
50 kg

EVALUATE the ANSWER
Is Answer Properly Stated?

Ves. As e.xloe.«.feJ 3, has units
of acceleration.

Is Answer Unreasonable?

No. This modest acceleration
could be achieved by 2 sled.

Is Answer Complete?

Yes. ay s He horizontal acceleration

of the sled which answers he
tgues'h‘on.

(extra space if needed)
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Problem #4: Two blocks are connected by a cable strung over a pulley, which is mounted at the top of an incline, The
10-kg block hangs over the edge of the incline. The 20-kg block rests on the frictionless incline. The "toe" of the incline is
at an angle of 37°* with respect to the horizontal. Find the magnitude of the acceleration and the tension in the cable.
(Similar to Fishbane, Gasiorowicz and Thomton 1993, problem 5.14)

------------------------------------------------------------------------------------

Picture and Given Information

37°

D WSt is Hhe acceleration of Hhe blacks?
2) What s the tension tn Hie cable?
A‘W‘““ Usc cl_ldgamfcs —= sum e ﬁrces awé 'ﬁ:m[ ‘H\Q acce(era'ﬁ'm 0{]

each block separstely. The fwo accelerstioms wust be Fhe same
because the klocks are cownected by a favt cable.

Aesome wo frrction iw Polley and befween 20kq block ond ucfive.
Aesume. wmassless pulley. Assume wmassless coble =S Fension is

Question(s)

LSCRIE e PLYSICS the same Hiroughout “Hhe colle,
{ree-bedy ciagroms c
F =Homa‘ d‘p
2 A fieline. ox ﬁod«A
Wi, Wp :avitation] facce. of
W, Qﬂ" nTE gar-li\ on block CA,E
(lso known as "weight")
T contact g
T e
Glsa kvown as "Jeusiat)
W
Z““fq‘fa"“:ief) . 3, T Components of Wa
gantitative Re onsnips
ZF Wn pT _ W“'=M5"Vt6’,. ‘ WAy"':WAC“G
ax' = Waxr = | =M, 3 3
Z'F;a' = FN.A = Way = O Wa= W,9 e Wa -y’
2 fex = O We =3
TreT-Wommga Tggewga, Wammasind, Wy =mygest



PLAN the SOLUTION Unkvnowns

Construct Specific Equations

find 2 Ei

T—mac_g = Mgd @
Fad T

Wier =T =m,a @ ,Wa'

ﬁu.cl WM'
Way' = magsing @
MaqsinB ~T=w,3a
T= mhgsine-m,a
MAQ Sind - Wy 3 — Wg g =Mgd
G(MASi”e“MB)': (Watmg)3

r- -------------- -‘
|
|
|

_ 9 (M,, sinB -w«g)
(Matwmg) !

\
J' & vesult

Check Units

3

®

9 Em/f]([ka}fksj):[%g Ok

[esd
T: [ig ) [ge]-[kq][tz]

=lkg mgi]=[N] oK

EXECUTE the PLAN
Calculate Target Quantity(ies) :

d= (‘? 85«/5“-) éij 5fu[37') — 00’:3))

(20kq + 1Ok
d=0.66 m/2

T=20k) @ Rinfir) $in B72) - (20kg) (0.66use2)

9

j

EVALUATE the AN
Is Answer Properly Stated?

Vec. Both the accelershon and the

Jensim came ot with $he Exj)ed"ﬁ
RIS,

Is Answer Unreasonable?

No. The accelerstion is a small frachim
of q and He Jensim exceeds e
bJEfﬁk‘l‘.‘ o’p bolocle BJ'US'E a [rﬂfe

Is Answer Complete?

Ves. The accelevahipw dic"Ht& blocles aud
fhe Jensim in the csble have been
Fond. This auswers fhe guestrion.

(extra space if needed)
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Problem #5;: A 3.0-kg box sits on a horizontal surface of your car seat as you drive at a speed of 20-m/s. The coefficient
of friction between the box and the seat is 0.50. You apply the brakes to stop the car. Calculate the shortest possible

stopping distance so that the box does not start to slide off the seat. (Similar to Fishbane, Gasiorowicz and Thornton 1993,
problem 5.30)

------------------------------------------------------------------------------------

Picture and Given Information

/ N V,=20w/s \{F"-‘-'-O
3.0kq —>
() 9 MC)_._\
('/U=O.5-O lé d-‘-‘-? \

Question(s) Wha'l‘ is the shortest ch'{-fance in which He car Can {.'h;'D Luf'anut
; 1 Allowing the lox fo slide?

Use duypswics -+ evaluste the forces on the box and +he
dccelerstion of the eov/box——+n stay together they wwst
accelerste fhe same. Then vce kine mahes fo get ‘e disfonce.

Time: Tuikial Hime is e ingfat Yoo apply e brakes.

Final fime (s the inshont +he car/hox sfops.
DESCRIBE the PHYSICS

1]

+
Diagram(s) and Define Quantitics 2 Motion c[iagrawt
Xo=0 Vo V=0 s
Vo =20m/ $—+x =0
a=¢ ¥t X, te
-Gee—\oo;l_g clhﬁram Horce c(iagram
| +4 W: gravitatiousl force
) ‘_f—' - of Eacth ow hox
W# L E N F;,: nocwsl Bece of
f m=3.0kg o T* Sext om box
Target Quantity(ies) | Kg }L: g;ﬁ/ . E:— : 'Gri‘ cﬁanal "E-rce; ﬂp
Quantitative Relationships CJ s g'g;;(: on loox
Zf‘;'-”- F‘,_q -W=0 W=wg C:mf-favt{: accelevation (—a) n
~ Fy ~mg=0 X—-difecﬁoes so use o o
S h=-F =wmCa) f‘._p=j-‘-F;1 X{:'-"-'i(-a)@.p- oz"'vﬂ('f#“?é"'/xf’
/quj: wma ;‘7X_F= --'i;g‘z-}\/,a'&{
Neaative b both are tegz=-D = SE Ve )T oV, eo
P e e ior 223 = (o= =,



PLAN the SOLUTION

Construct Specific Equations

F;v\d X¢
Xp=-4ate*+ vt @
Find
PITCIN G
Find Fy
Rowg=0 @
Fu=mg
Jhg = K=
/:=/ua ®

X_F: ——éﬂﬁf,r_t'f-vo't.p
Find te

d= Vo /'tf
used result @

te=Va/a
f‘FZVO//uaV 2

;é) + v,(/n!@
Vo 4 Vo

unkwnowns

3

2
3

Check Units

[l
Clms] )
t/k is unitless

OK

EXECUTE the PLAN
Calculate Target Quantity(ies)

ow/s)
(G. 5_0) (? 8-...\/5 z)

EVALUATE the ANSWER
Is Answer Properly Stated?

fes. As expected Xp cawme out in
wits of ' length,

x.p'-:

ik
2

Is Answer Unreasonable?

No. While sto ping, the cars average
veloeity is 10wm/s and, considering Xe
dbove,the stopping time is ~ ¢ seconds.
These valves sound guite plausible_.
Is Answer Complets?

Yes. F;'ualiug e s-f-oppfng distance
Xe duswers the Question.

{extra space if needed)
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Problem #6: A 20-kg crate sitting on a horizontal floor is attached to a rope that pulls 37° above the horizontal. The
coefficient of static friction between the crate and the floor is 0.50. (a) Construct a force diagram for the crate. (b) Determine

the least rope tension that will cause the crate to start sliding. (Similar to Fishbane, Gasiorowicz and Thornton 1993,
problem 5.29.)

------------------------------------------------------------------------------------

Picture and Given Information

/us= 0.50

Question(s) wb\a‘f Is ‘HA& 'easﬁ Neope 'Eensfov\ ~H/\a‘(' lHI'” Cavse -Hae ceate

[+
to start sliding? (‘fehts is ‘e sawme as the waximuwm Tension
A which will not “sfact +he crate woving.)

Use c‘_ldgawics. For e crate To vemain at vest Hie ’G‘f:‘f’fnv\a‘ 'ﬁrce
between Hhe crate an.cl Hhe Sw'Face wmust be 3¢ grga'{:

as Hie Whorizoutal Compmewﬁ of the tension.
No motion so His is a static friction situation .

DEAGRERIRIIICR Max. tension = wax. friction 5o vse "="in REufy .
M_R_ du d L di T: contact force of
Iee—Vody diagram ‘—oﬁ:;‘w% Vope on crate

/’1:( * W: ggavi'l'aﬁouaf focce
)6 _ E Eacth on crate
| . " T F,: normal (contact) foree
EF F{-‘ 5'6 42 & Floor on crate
F, W 0=37° F;:'R‘{c‘f'foua( force
'_ =37 : of €loor on crate
m=20kg LA |
/u".: 0.50 +
g= q.8wm/s?
Target Quantity(ies) T
Quantitative Relationships
ZF;: f—;-i-'l;-w-.:.— O W=wmq Com?onew"r; d-‘p T
L BTy -mg =0
B genevally: Fp S wh,
ZF; - ’I;-TF—'F —F? O he\r-e__- F'-P ."'_/u‘l:;‘ '1;
s "‘—'/u: (Y] =




PLAN the SOLUTION

Construct Specific Equations mknowns

Fud T T
T.=Teos & @ [E
Find T

Tuwh=0 ® R

ﬁucl F.u

FtTy-mg=0 3) [Iy
Find Ty

T,=Teind ()
E,*Tsine-m3=o
Fu=mg-TsinB

7; "‘/u,(nng -*Ts'm95 =0

Te= pamg = ulsind
Jmg -/u;rﬂ'ne =Teosb
Teos6 -ly,t;rsine = g

N -
= '

Check Units

[ I[kg1lm/s2]
L1+ [CIEA

= [kg wg=l=[N] ok

EXECUTE the PLAN
Calculate Target Quantity(ies)

= _(0.50) (20k) (9.8 /s?)
cos(27°) + 0.50sin(37°)

EVALUATE the ANSWER
Is Answer Properly Stated?

Ves. As exof‘ed‘-ec[ T came out in
units focce.

Is Answer Unreasonable?

No . This modect temsion is dbout YS%

the weight of the cvrate. Notice thet
weve the vope horizonta|l (8=0°)
Hhew e vequived temsion would be

Is Answer Complete? \\ T ‘= (0.50)(z0 kg) (9.8 w/¢ ")A.

'IJCS. F;‘wcl.l'ug T = T'-_': Qg N >T.’
mswers the || Less fension is weeded
3ue_g-|-l‘°n wl\ﬂli\ Pl:”lv\ﬂ a‘f'Fc:: ”Cf‘loq;ig-e

' caus n
e £33 Ik veduced.
(extra space if needed)
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Problem #7: Four ions (Na*, CI", Na* and CI" ) each separated from its neighbors by 3.0 x 10-10-m are in a row. The
charge of a sodium ion is +¢ and lhaz of a chlorine ion is -e. Calculate the force on the chlorine ion at the end of the row due
10 the other three ions. (Similar to Fishbane, Gasiorowicz and Thornton 1993, problem 22.29)

------------------------------------------------------------------------------------

Picture and Given Information

+e - +e_ -e
]4—? Ox [0 W —>[¢—2.0x16"% —>\<~3 OxI0

Whst s He Htal electostatic farce on Hie chlorine ion on
the end dve * the other Hvee fone®

Approdch Us‘a e‘gg@mtcs - ‘rvgc[ ‘Hle 'l(c':rce ow Hhe C,H(hrme (o cfue. “fo
each of He other tons Mell\!ldua” Hew suwm Jhe farces,
Remember that Hhe elechrostatic ‘f;.rrce s rePulswe it Hhe
OlO_]e,c"l‘S have Hhe same (ﬂgh of ) dharge and aftractive
it Hee okajecfs e o‘oposr"fefg c(\av-sed

Question(s)

DESCRIBE the PHYSICS

Diagram(s) and Define Quantities v & P D X=O
" —p——9 il X2=3.0% 167 m
Xy X3 X2 Xi Xz =6.0% 107"%n
'R'ee-hodg cltagrawx Lor e diagvam Xy = = 9.0 % 107%
tow 3=( iow | ? =-€
+y e
F‘;! F"'-' .‘ ==&
—D—> +x y=€
le r-;r El E' g ’GK lCJ |1C
Fz'l)F';l yr’ electrostatic force of ions #2,#3#Y kﬂ = ?.Dxlﬁq______m =
on jon #| c*

Target Quantity(ies) Z F

Quantitative Relationships
2L =0=> 2F=3F Fo= kelt gl

ZF;:: Er_€|+ﬁl{ r
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PLAN the SOLUTION

Construct Specific Equations

Find 22 F

unknowns

[ZF
TF=3f O Bi7
Find J\F

ZF;_c':Fz:"F‘a‘:"' Eu @ GI:F;,EII
Find F

— o — — e — — e e S m— g T

Check Units

M G m)
=[N1 oK

EXECUTE the PLAN
Calculate Target Quantity(ies)

JIF =GordNu) 6xt5™ O
%-Oxlﬁ"gu)z -(G.Oxfﬂ'"w)t +(‘i.0 ’doﬂa"“)a

@} = 2.2xI100'N, Pog;ﬁve;s,h s
left

EVALUA R
Is Answer Properly Stated?

Ves. As expected J.F + i
aljni‘t-: a‘FP'%orce. Fome ot In

Is Answer Unreasonable?

No. ZF ic Yather small and divected
Toward the other lons, Thic makes

sense because ‘He dowminawt force

(From the nearest faw) is attractive.

Is Answer Complete?

Gos. The Httsl force on fow # has
been found. This Suswers the gUﬁS‘ﬁ'm.

(extra space if needed)

4-23



4. Practice Exam Problems

Problem #1: You are about to climb up a
ladder to fix a window on the second floor of
your friend's house when you suddenly
wonder what keeps the ladder from falling
down. You know that you want to know all of
the forces acting on the ladder while it is
leaning against the wall before you get on it.

(a) Draw a picture of the situation indicating
all of the forces on the ladder.

(b) Draw a free body diagram and force
diagram of the ladder.

(c) Describe, in words, each of the forces
acting on the ladder.

(d) Describe, in words, all forces which are
related to the forces on the ladder by the
Third law. Make sure you indicate which
pairs of forces are third law pairs.

(e) Draw another picture of the situation
indicating all of the forces that the ladder
exerts on other objects.

Problem #2: You have been hired to design
the interior of a special executive express
elevator for a new office building. This
elevator has all the latest safety features and
will stop with an acceleration of g/3 in case of
any emergency. The management would like
a decorative lamp hanging from the unusually
high ceiling of the elevator. You design a
lamp which has three sections which hang one
directly below the other. Each section is
attached to the previous one by a single thin
wire which also carries the electric current.
The lamp is also attached to the ceiling by a
single wire. Each section of the lamp weighs
7.0-N. Because the idea is to make each
section appear that it is floating on air without
support, you want to use the thinnest wire
possible. Unfortunately the thinner the wire,
the weaker it is. To determine the thinnest
wire that can be used for each stage of the
lamp, calculate the force on each wire in case
of an emergency stop.

Problem #3: You are taking care of two
small children, Sarah and Rachel, who are
twins. On a nice cold, clear day you decide to
take them ice skating on Lake of the Isles. To
travel across the frozen lake you have Sarah
hold your hand and Rachel's hand. The three
of you form a straight line as you skate, and
the two children just glide. Sarah must reach
up at an angle of 60 degrees to grasp your
hand but she grabs Rachel's hand horizontally.
Since the children are twins, they are the same
height and the same weight, 50-lbs. To get
started you accelerate at 2.0-m/s2. You are
concerned about the force on the children's
arms which might cause shoulder damage. So
you calculate the force Sarah exerts on
Rachel's arm, and the force you exert on
Sarah's other arm. You assume that the
frictional forces on the ice skates are
negligible.

Problem #4: You are planning to build a log
cabin in northern Minnesota. You want to
pull a 205-kg log up a long smooth hill by
means of a rope that is parallel to the hill
surface. You need to buy a rope for this
purpose so you need to know how strong the
rope must be. Stronger ropes cost more. The
hill surface is flat and smooth and at an angle
of 30 degrees with respect to the horizontal.
The coefficient of kinetic friction between the
log and the hill is 0.900. When pulling the log
up the hill, you will make sure that its
acceleration is never more than 0.800-m/s2.
How strong a rope should you buy?

Problem #5: After graduating you get a job
in Northern California. To move there, you
rent a truck for all of your possessions. You
also decide to take your car with you by
towing it behind the truck. The instructions
you get with the truck tells you that the
maximum truck weight when fully loaded is
20,000-1bs and that the towing hitch that you



rented has a maximum strength of 1000-1bs.
Just before you leave, you weigh the fully
loaded truck and find it to be 15,000-lbs. At
the same time you weigh your car and find it
to weigh 3000-1bs. You begin to worry if the
hitch is strong enough. Then you remember
that you can push your car and can easily keep
it moving at a constant velocity. You know
that air resistance will increase as the car goes
faster but from your experience you estimate
that the sum of the forces due to air resistance
and friction on the car is not more than 300-
Ibs. If the largest hill you have to go up is
sloped at 10° from the horizontal, what is the
maximum acceleration you can safely have on
that hill?

Problem #6: The quarter is almost over so
you decide to have a party. To add
atmosphere to your otherwise drab apartment,
you decide to decorate with balloons. You
buy about fifty and blow them up so that they
are all sitting on your carpet. After putting
most of them up, you decide to play with the
few balloons left on the floor. You rub one on
your sweater and find that it will "stick" to a
wall. Aha! You know immediately that you
are observing the electric force in action.
Since it will be some time before you guests
arrive and you have already made the onion
dip, you decide to calculate the minimum
electric force of the wall on the balloon. You
know that the air exerts an upward force (the
buoyant force) on the balloon which makes it
almost "float". You measure the weight of the
balloon minus the buoyant force of the air on
the balloon to be 0.05-1b. By reading your
physics book, you estimate that the coefficient
of static friction between the wall and the
balloon (rubber and concrete) is 0.80. Use the
Focus the Problem and Describe the Physics
sections of the solution sheets.

Problem #7: While working in a university
research laboratory you are given the job of
testing a new device, called an electrostatic
scale, for precisely measuring the weight of
small objects. The device is quite simple. It
consists of two very light but strong strings
attached to a support so that they hang straight
down. an object is attached to the other end of
the string. One of the objects has a very
accurately known weight while the other
object is the unknown. A power supply is
slowly turned on to give each object an
electric charge which causes the objects to
slowly move away from each other (repel)
because of the electric force. When the power
supply is kept at its operating value, the
objects come to rest at the same horizontal
level. At that point, each of the strings
supporting them makes a different angle with
the vertical and the angle is measured. To test
the device, you want to calculate the weight of
an unknown sphere from the measured angles
the weight of a known sphere. You use a
standard sphere with a known weight of 2.0-N
supported by a string which makes an angle of
10.0° with the vertical. The unknown sphere's
string makes an angle of 20.0° with the
vertical.

Problem #8: Finally you leave Minneapolis
to get in a few days of spring break but your
car breaks down in the middle of nowhere. A
tow truck weighing 4000-1bs comes along and
agrees to tow your car, which weighs 2000-
Ibs, to the nearest town. The driver of the
truck attaches his cable to your car at an angle
of 20° to the horizontal. He tells you that his
cable has a strength of 500-Ibs and that he
plans to take 10 seconds to tow your car at a
constant acceleration from rest in a straight
line along the flat road until he reaches the
speed limit of 45 miles per hour. If rolling
friction behaves like kinetic friction, and the
coefficient of rolling friction between your
tires and the road is 0.10, determine if the
driver can carry out his plan.



Problem #9: While visiting a friend in San
Francisco you decide to drive around the city.
You turn a corner and are suddenly going up a
steep hill. Suddenly, a small boy runs out on
the street chasing a ball. You slam on the
brakes and skid to a stop leaving a 50 foot
long skid mark on the street. The boy calmly
walks away but a policeman watching from
the sidewalk walks over and gives you a ticket
for speeding. You are still shaking from the
experience when he points out that the speed
limit on this street is 25-mph. After you
recover your wits, you examine the situation
more closely. You determine that the street
makes an angle of 20° with the horizontal and
that the coefficient of static friction between
your tires and the street is 0.80. You also find
that the coefficient of kinetic friction between
your tires and the street is 0.60. Your car's
information book tells you that the mass of
your car is 1570-kg. You weigh 130-Ibs.
Witnesses say that the boy had a weight of
about 60-1bs and took 3.0 seconds to cross the
15 foot wide street. Will you fight the ticket
in court?

Problem #10: One morning while waiting for
class to begin you are reading a newspaper
article about airplane safety. This article
emphasizes the role of metal fatigue in recent
accidents. Metal fatigue results from the
flexing of airframe parts in response to the
forces on the plane especially during take off
and landings. As an example, the reporter
uses a plane with a take off weight of
200,000-Ibs and take off speed of 200-mph
which climbs at an angle of 30° with a
constant acceleration to reach its cruising
altitude of 30,000 feet with a speed of 500-
mph. The 3 jet engines provide a forward
thrust of 240,000-lbs by pushing air
backwards. The article then goes on to
explain that a plane can fly because the air
exerts an upward force on the wings
perpendicular to their surface called "lift".
You know that air resistance is also a very
important force on a plane and is in the
direction opposite to the velocity of the plane.
The article tells you this force is called the
"drag". Although the reporter writes that
some metal fatigue is primarily caused by the
lift and some by the drag, she never tells you
their size for her example plane. Luckily the
article contains enough information to
calculate them, so you do.
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Chapter 5

The Conservation Approach

Introduction

Usually the difficulty in solving a problem
is not in the calculations, but in deciding upon
an appropriate approach by which to plan the
solution. Most of the problems you will
encounter can, in principle, be solved using a
combination of kinematics and dynamics, but
many times this approach leads to a long,
convoluted, and difficult plan. Conservation
principles provide an alternative approach and
are a powerful tool in solving physics
problems, especially when the details of the
interaction between objects are not of interest.

The search for conserved quantities to
model nature is one of the primary concerns of
physics. Simply put, a conserved quantity is
one for which you can set up an accounting
procedure. Once you have chosen a system,
the change in the amount of a conserved
quantity in your system is always equal to the
amount of that quantity that was transferred
into your system from the environment or out
of the system to the environment. If your
system is isolated so that it does not interact
with its environment, then the amount of a
conserved quantity in the system can not
change. Conserved quantities that you will
use in this course include mass, charge,
energy, momentum, and angular momentum.
If X represents any conserved quantity for a
system, the mathematical expression of the
conservation of that quantity over a time
interval between some initial time and some
final time is:

Xf-Xi= Xinput - Xoutput
where Xf is the amount of X in the system at

the final time, Xj is the amount at the initial
time, Xinput is the amount that comes into the

system from the environment during that time
interval, and Xoutput is the amount that leaves

the system to the environment during that time
interval. This conservation equation can be
written more compactly as:

AXsystem = AXiransferred-

As with dynamics, it is critical to identify the
system of interest, and as with kinematics, it is
critical to identify the most useful initial and
final times.

The first section of this chapter illustrates
the wuse of conservation principles by
describing how to use an energy conservation
approach. This section concludes with some
brief remarks about using the momentum
conservation approach. The second section
includes practice exercises from textbooks
with sample solutions. The last section
includes realistic practice problems from past
exams.

The Energy Conservation Approach

Many common problems have situations that
are best suited to an energy conservation
approach. For example, when the motion or
the interactions of the system are quite
complicated, important information about the
system may be calculated without needing to
know the details. No matter what happens,
energy is always conserved. Unfortunately,
in some cases you don’t have
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enough information to account for all of the
energy, so that an energy conservation
approach is not useful. Since energy is a
scalar, results which depend on directions
usually must be calculated using approaches
which involve vector quantities such as
kinematics, dynamics or another conserved
quantity, momentum.

The example problem on the opposite
page illustrates how to use an energy
conservation approach. A complete solution
is given later in this chapter (pages 5-20 & 5-
21) together with several other examples.

Focus on the Problem

The first step in solving any problem is to
draw a useful sketch of the situation. To use
energy conservation, it is important that the
sketch clearly show the initial and final states
of the system and any interactions of the
system with the environment. This sketch
aids in sorting out the interactions of
important objects so that you can decide
which system to consider and what constitutes
its initial and final state. In your sketch,
include all energy transfers that affect the
system. Also, include all of the relevant
information given in the problem.

For the skier problem, we have chosen to
draw a side view of the hill. This allows us to
visualize the slope of the hill and the distance
traveled by the skier. The sketch shows all of
the relevant information including all of the
forces on the skier. Some of this information
might be superfluous to the problem solution,
but since we will use the sketch to decide on
the approach, it must contain everything that
might be useful.

After determining the question, the next
step is to decide how to approach the problem.
We could use dynamics and kinematics to
solve the skier problem. That would
necessitate using forces to find the
acceleration up the slope. The acceleration
that results from those forces can then be used

to find the final velocity of the skier at the top
of the hill.

For this problem, it seems simpler to use
conservation of energy. The skier moves up a
hill with increasing speed. The skier’s kinetic
energy increases. The energy of the system
increases because energy is being transferred
into the system by its interaction with the
rope. Energy is also being transferred out of
the system by the frictional interaction with
the snow and air resistance from the wind.
The skier also interacts with the Earth via the
gravitational force. If we include the Earth in
the system, the Earth-skier system increases
its gravitational potential energy. If we do not
include the Earth in the system, the
gravitational interaction causes another energy
output from the skier.

Before choosing a system, you need to
determine the important physical objects and
how they interact . Your system might consist
of some combination of those objects. In our
example, the skier, the hill, the rope and the
Earth are important interacting objects. A
system is only useful if you are able to
determine the initial amount of energy (initial
energy state) of that system and the final
amount of energy (final energy state) of that
system. In addition you must be able to
account for all energy transfer to or from that
system between the initial and final times.

Energy Diagram

An energy diagram is very helpful to make
sure that the system you choose is useful.
Since we want to know the final speed of the
skier, we will first consider the skier as our
system. [Note: This is not the system shown
in the example solution. That system will be
discussed later in this section.] If the skier is
the system, energy is then transferred by
interactions with the Earth, the rope, the snow,
and the air.

In addition to specifying a system, we
must also specify the time interval of interest.
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Now you are ready to determine the initial and
final states of the system. For our example, it
would be best to take the initial time to be the
instant after the skier starts getting pulled up
hill. Again, since we want to determine the
speed of the skier at the top of the hill, the
final time should be the instant the skier gets
to the top of the 328-ft long the slope. Since
the system is a single object, its energy state is
quite simple (we ignore internal energy for the
moment) -- the skier only has kinetic energy.
With the skier as our system, we must look
at all of its energy transfers, inputs and
outputs. Any force with a component in the
direction of motion is the source of an energy
input. The contact pull of the tow rope on the

skier is the only force in the direction of
motion. Therefore, it is the only energy input
source from the environment. The frictional
force of the snow and the air on the skier is
opposite to the direction of the skier's motion.
Consequently, this combination of forces
causes an energy transfer out of the system to
the environment. There is also another
interaction with the environment that transfers
energy from the system. The gravitational
pull of the Earth on the skier (skier's weight)
has a component in the direction opposite to
the skier's motion. The energy diagram for
the skier as the system is shown below with
the coordinate system chosen to have one axis
along the direction of motion.

Initial State

Energy Transfer

Einput :E(§ _OX )
Ebutput =F &

Final State
+y v

Ep=(1/2) my
FOEL AR

Let us go back to the skier problem and
choose a different system so that the
gravitational force is not an external force and,
therefore, can not transfer energy out of the
system. Since the Earth is the object which is
exerting that force on the skier, let us consider
the Earth and the skier as our new system.
Instead of an external gravitational force
transferring energy from the skier, we now
have a gravitational potential energy (GPE) of
the Earth-skier system, which increases as the
skier goes up the hill. Although the Earth is in
the system from the gravitational point of
view, we will still choose the snow on the hill

and the air as external to the system. The tow
rope, snow, and air still exert external forces
which cause energy transfers to and from the
system. You can now choose your y-axis to
be vertical with its origin at the skiers initial
elevation. Then, since GPE; = mgy,, our
system has no initial gravitational potential
energy. The system does have a final
gravitational potential energy. The energy
diagram for this system is shown on page 5-2
and in the complete solution later in the
chapter (page 5-20).

As our example shows, the energy terms
for the system depend on how you choose



your system. If an interaction is between an
object in your system and an object in the
environment, that interaction gives rise to an
energy transfer. If you know the force, the

energy transfer is just Fcos@-Ax (work),

where F is the force applied, 0 is the angle
between the force and the change in position,
Ax. If an interaction is between two objects in
your system, there is no energy transfer.
There may be a change in the type of energy
in the system such as potential energy or
internal energy. It is vital that all of your
energy terms are consistent with whatever
system you choose.

The most convenient coordinate system
may also depend on the system of objects for
which you are determining the energy. With
the skier as the system we chose a coordinate
system with an axis along the direction of
motion.  With the Earth-skier system, a
vertical axis was chosen to effectively show
that the skier moved away from the center of
the Earth and gained gravitational potential
energy.

Quantitative Relationships

Next you need to write down the
appropriate conservation relationship. In this
case conservation of energy:

Efinal - Einitial = Einput‘ Eoutput-

Identify each form of energy present in your
system. These terms can be kinetic energy,
gravitational potential energy, spring potential
energy, internal energy, etc. The object of this
section is to write down only those specific
equations applicable to your system using the
approach you have selected.

For the skier problem, you can choose the
skier as the system and the energy terms are
given with the energy diagram on page 5-4.
The system’s energy is only kinetic and there
is energy transferred to or from that system by

all of the forces in the problem except the
normal force. The normal force cannot
transfer any energy to the system since it is
perpendicular to the direction of motion of the
skier. If you choose the Earth-skier system,
the energy terms are shown on page 5-20.
The environment still interacts with our
system via the tow rope, the snow, and the air.
As before, the system (skier and Earth) loses
energy to the environment through the
interaction (frictional) with the snow (and air)
and gains energy through the interaction with
the rope. Now some of that energy transfer
goes into increasing the gravitational potential
energy of the system as well as its kinetic
energy. The skier-Earth system will increase
in kinetic energy (accelerate) up the hill only
if the energy input is greater than the sum of
the energy output and the potential energy
increase.

One might wonder how we can have the
Earth in our system yet claim that the
frictional interaction of the snow is taking
energy from the system. Certainly, the snow
is on the Earth. The "Earth" in our system is
only that part which exerts the gravitational
force. The snow is not a factor in determining
gravitational potential energy and so we
choose to consider it outside of our system. If
the snow were to be taken as part of the
system, there would be no energy transfer by
the frictional force. Instead, the effect of that
force would be to change the internal energy
of the system by heating up the surface of the
skis and the snow. Since we do not have any
information about this internal energy change
(typically a change of temperature) it is not
useful to include the snow in the system.

Plan the Solution

If you have constructed good energy
diagrams and written down the energy terms
which correspond to them, the mathematical
plan of the solution should be very straight
forward. Sometimes in conservation problems
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the mass of your system is an unknown and
you may get one fewer equation than the
number of unknowns. At a first glance this
may seem like an unsolvable situation but, if
each energy term depends on that unknown
mass, the mass will cancel out of the
conservation of energy equation. So, if you
are faced with a problem where mass is an
unknown, determine if each energy term is
mass dependent. If each term is mass
dependent, enter into the plan confident that
the mass will cancel out. This is also true for
dynamics problems where each force term
depends on the mass of the object being
accelerated.

The Momentum Conservation Approach

In some sense, using the momentum
conservation approach can be even easier than
using energy conservation. As with energy,
momentum is always conserved no matter
what the situation. With momentum there are
no terms corresponding to potential energy or
internal energy so deciding on your system is
somewhat less complicated. In addition, an
external force always transfers momentum to
the system in the direction of that force,

Doraner = F-Ar. This should be contrasted

with the energy approach where energy is
transferred to the system only by the
component of external force along the
direction of motion. A force perpendicular to
the direction of motion of a system does not
transfer any energy but does transfer
momentum to that system.

The one complication with using the
momentum approach is that momentum is a
vector quantity.  That means that each
component of momentum is conserved
independently of the other components.

Px final - Px initial = Px input~ Px output
and

Dy final - Py initial = Py input~ Py output
and

Pz final - Pz initial = Pz input- Pz output-

Choosing a convenient coordinate system can
be important in keeping your mathematical
plan simple and your calculations short.

In some problems it is useful to break the
situation up into separate time intervals.
During one interval it may be most useful to
use conservation of energy, during another
conservation of momentum, and during a third
both the conservation of energy and
conservation of momentum. The decision on
which approach to use during which time
interval depends on whether or not you have
enough information to determine all of the
energy terms or momentum terms in the
conservation equations.



2. Practice Textbook Problems

The problems listed 'on the next page are
taken from your text. Use the five-step
problem solving strategy to solve these
problems. It is the most effective way to work
through new problems, and it will be a useful
tool on exam days. To make it easier to
practice using the strategy, we include solution
format sheets. These sheets mark off sections
for each of the five problem-solving steps.
Each section also includes brief prompts for the
type of information to include in the space
provided. Make copies of these sheets or
sketch your own and use them to practice
solving problems. This will help the strategy
to become second nature for you.

Example solutions to the problems are
worked out on the solution sheets, following
the problem solving strategy. Do not read the
example solutions before you have tried to
solve the problem yourself. Your goals should
be to understand (a) what kind of information
belongs in each step, and (b) how one step
leads logically into the next. Afrer you have
tried to solve a problem, you can check your
understanding by comparing your solution to
the example solution. When you have resolved
any differences berween the two solutions, go
on and try to solve the next problem.

Problem #1: A 1200-kg elevator must be
lifted by a cable that causes the elevator's speed
1o increase from zero to 4.0 m/s in a vertical
distance of 6.0-m. Calculate the cable tension
needed. (Based on Jones and Childers 1992,
problem 6.27)

Problem #2: A 0.20-kg egg is dropped from
a ladder a vertical distance of 4.0-m. The egg
will break if subjected to an impulse force
greater than 80-N. Over what minimum
distance must a constant force be exerted 1o
avoid breaking the egg? (Similar to Jones and
~ Childers 1992, problem 6.76)

Problem #3: Show that the minimum
distance needed to stop a car traveling at speed

v is v2 /2ug, where p is the coefficient of
friction between the car and the road and g is
the acceleration of gravity.

Problem #4: You are a driver who always
obeys posted speed limits. Late one night you
are driving on a country highway at 55-mph.
Ahead you see a sign that says, "Curve Ahead
200 feet, Slow to 35 mph.” You are 30 feet
from the sign when you first see it. You begin
to apply your breaks at the instant you pass the
sign. You slow your car down at a rate of 7-
mph each second. As you reach the curve, are
vou traveling within the posted speed limit?
(Note: This is the same problem that was
solved using kinematics approach as example 3
in Chapter 2).

Problem #5: A water slide is 42-m long and
has a vertical drop of 12-m. If a 60-kg person
starts down the slide with a speed of 3.0 m/sec,
calculate his or her speed at the bottom. A 120-
N average friction force opposes the motion.
(Based on Jones and Childers 1992, problem
6.41)

Problem #6: Every winter you hold an
annual ski party. Most of your friends are
good skiers and can handle the tow rope which
1s used to go from the lodge to the first chair
lift. One of your friends, who weighs 176
pounds, usually loses his balance when a tow
rope pulls him more than 5.0 mph. This tow
rope pulls people up a 12 degree hill that is
328-ft long. The tow rope exerts a 62-1b force
on the skier, and the 4.0 mph wind together
with the sticky snow exert a 25-1b force that
opposes motion up the hill. Will your friend
fall? (Similar to Jones and Childers 1992,
example 6.10)
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Problem #7: A 1200-kg car traveling south
at 24 m/s collides with and attaches itself to a
1200-kg truck traveling east at 16 m/s.
Calculate the velocity (magnitude and direction)
of the two vehicles when locked together after
the collision. (Based on Jones and Childers
1992, problem 7.37)

Problem #8: A billiard ball at rest is hit
head-on by a second billiard ball moving 1.5
m/s toward the east. If the collision is elastic
and we ignore rotational motion, calculate the
final speed of each ball.

Problem #9: An 80-g arrow moving at 80
m/s hits and embeds in a 10-kg block resting
on ice. How far does the block slide on the ice
following the collision if it is opposed by a 9.2-
N force? (Similar to Jones and Childers 1992,
problem 7.26)

Problem #10: A student shot a 10-g spitball
in class. The spitball hit and stuck to a 100-g
" scale model of the moon that was right in front
of the teacher. The model was hanging from
the ceiling by a 1.5-ft string. The spitball
covered the 4.0-m between the student and the
model in 0.4-sec. The teacher has the ability to
notice vertical displacements of more than 2-
cm. Could the teacher have noticed the vertical

movement of the model? (Based on Jones and-

Childers 1992, problem 7.26)

Problem #11: An ice-making machine
removes heat from 0 Celsius water at a rate of
280 J/s. Calculate the time needed to form 2.0-
kg of ice at 0 Celsius. (Similar to Jones and
Childers 1992, problem 11.47)

Problem #12: Calculate the amount of
energy needed to change a 0.50-kg block of ice
at 0 degrees Celsius into water at 20 degrees
Celsius. (Similar to Jones and Childers 1992,
problem 11.38)

Problem #13: The 1.0 X 107 kg of ice in a

5-8

small pond has an average temperature of
-5.0 degrees Celsius during the middle of
winter. A movie making company wants to
convert the pond to 100 degrees Celsius steam
for a movie special effect. How much heat
must they add to the frozen pond? (Similar to
Jones and Childers 1992, problem 11.40)

Problem #14: An electric grill made of iron
has a specific heat of 460 J/Kg C and a mass of
2.8-kg. To cook French toast, the grill is
warmed from 20 to 350 degrees Celsius by
resistive heating wires that produce thermal
energy at a rate of 1500 W when connected to a
115-V potential difference. Fifty percent of the
thermal energy is radiated into the room as the
grill warms. How many minutes are required
to warm the grill?

Problem #15: An airplane deicer melts
0.10-kg of ice from the wings of an airplane
each minute. The deicer consists of resistive
heating wires connected to a 24-V battery.
Calculate the current through the heating wires
and their resistance. Assume that the deicer
transfers 100 percent of its energy to the ice.
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Useful Mathematical Relationships:

: . : b
For a right triangle: sin 0 :% , cos 0= o > tan 0= b

h

If Ax2+Bx+C=0, then x=

a

aZ2+b2=c2 sin20+cos20=1
For a circle: C=2nR, A = nR2

4
For a sphere: A =4nR?,V =73 7R3

-B+ \/B2-4AC

2A

Fundamental Concepts and Principles:

PE =-G2  pg =k, 142

AX ) Ax
V == R = —
av At Vmstant llm@t %0) At
2 F =m a AEsystem =
AEtransfer
Ap system = AD transfer P =MV
PE
V=—
q
Under Certain Conditions:
V2
1 ) a=—
szaa(tf_ti) +vit —t) +x r
PE =1 k2
2
V =1R P =1V

Y

KE = l mV2
2

av

P transfer = 2 Fr = At

m;m,

F=G—>3=
r

F = kAx

T T

AEinternal = ¢ m AT

Av
=limi\t ->0)—
A )At

ainstant

Eiranster = Fcos0 - Ax

|_Aq
At

F=k, ‘h;lz
r
PE = mgAy
_pL
A

Useful constants: 1 mile = 5280 ft, RE = 4000 miles, g = 9.8 m/s? = 32 ft/s2,
G=6.7x101IN mz/kgz ,ke=9.0x 109N m2/C2,e=1.6x1019C

AEinternal=m L



Problem #1: A 1200-kg elevator must be lified by a cable that causes the elevator's speed 1o increase from zero

104.0 m/s in a verucal distance of 6.0 m. Calculats the cable tension needed.
Based on Jones & Childers 1992, problem 6.27

EOCUS the PROBLEM

Picture and Given Informarion

4T
T 1\/; = 4.0 mfs
' W
4 —
b m | . m= 1200 kg
‘_L Vi =0 W\/S
r
Question(s) W
What vhuarp Tewsiono 1w THE CABLE 15 NEEDED TD CAVSE Twe
ELBVATOR. 0 GO FROM %ERO T0 4 mfs 1w by ¢
Approach
USE CONSERVATION OF ENERGY.
PEFvE Twe systomw A e ELcvATOR.
Tormar MME 15 e IvsTRRT e ELEVATOR. STARTS mov)ng.
FIMAL TIME 15 THE INSTAUT THE  ELEvATOR HAS AMBVED 6.0 mA.
Inmial BNERGY 1S zerD. FuwalL evmay 1S KINEMATIC,
Iuput ENEREY FRom TEWSION . OutfuT ENEREY FRom WEIGHT,
Diagram and Define Variables
Ioman T AnsFer_ Fivar
S -_— Yi=0 YE=bm
_F e e ey
- b4 7'F Y& .1V‘F Vi=0O V‘qu-""/s
m= 200 Kj
T gz 9.8 m/s
i Ay=6m
W
V.=0 .
Yi + o g Ty Yi T

Target Variable(s) Fioo T

Quantitative Relationships
Ep=E; = B - BEus

E; = KE Eil\ — T-AY
KE = %mv? Eot = WY
E'I = O \‘\./': MS
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DLAN the SOTUTION

Construct specific equations Usotmbiuow

Fiwp T : g

@ E;h :-Tﬁ‘f E;“

Fiwp E'w.t _—

] I:HJ‘t

@ EF— Ei = E'l--\" E-ou'\' b

FI”D E‘P .

Finp wa:

Ew+= WﬂY \,-./
Fivn \W/:

D w=mq

Check for sufficiency
S Unknowns (T‘, Ein | €7, Eput, w)

5 EavaTtions (T, 3T, JII,']E’_‘,'I)
Outline the Math Solution

59-..“@ FoR. W/ awp PuT ivTO @
Sowe () For E,; anp uT o @
Sows Fok. Ef Awp put ww@
Sowe@ For. E,, awp put 1»1-::@

Sowve @ FoR. T

EXECUTE the PLAN
Follow the Plan

Sowve @ W =mg

Por o (@) Eout = mq by

SDL\JE' Eovt = mgly

Por v @ Ee-€ =€, - mg Ly

Sowra@

Por tw‘w@ Y mv - E = E;M-MSDY

Sowve @ bVt mady -ﬁ{-’: B
LmVt £ mqAyY = €,

Er= '/2_ mv*

LmV 4 mg By = Toy

YVt + MaDY _ T
by -

EWELK woTs !
= I3 Ive]™ & [g)[™es)[m]
Lm3]
= [kad[™%2.]
[m1
= [kqJ[™:2]
[N o.K.

Calculate Target Variable(s)
1= "% (1200k)(4™5)" + (1200ka)(.8 ~2)(bm)
B (om)

\T’.—. 13,360 N

'\!
Is Solution Clear?
Yes. THe ANSWERL 15 10 LTS OF force,

Is Answer Reasonable?

Yes. THE WEWLHMT OfF THE EleuaTor 15
W=maq = (12o0¥a)(q.8™/>) £ |2,000 N.

To ACCELERATE AS DESCRIBED WE NEED TO APPLY

A PoRLE GREATEL. TuAN THE WEIGHT.
Is Answer Complete?

Nes. Tre QUESTION BAS BEEN CoMPLETELY
ANSWERED.
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Problem #2: A 0.20 kg egg is dropped from a ladder a verucal distance of 4.0 m. The cgg will break if subjected
1o an impulse force greater than 80 N. Over what minimum distance must a constant Sio thg force be exernicd 1o

avoid breakine the ece?  Similar to Jones & Childers 1992, problem

6

EOCUS the PROBLEM

Picwre and Given Information

Question(s)

O D.lOK.}

v Y
v

I

| 4m
|

|

i

|
. N,

— A\I’=?

F=80ON

MWHAT 15 THE MUIMUM  DISTRICE (AY) ovER. wWhicH A BOWN ForeE caw
BE EXERTED O TE B wiTHOUT BRERKING THE Beg.

Approach
Use cComservaTion ©of EnEREY.
DEFINE THE SNSTEBM AS: THE EART AMD Ebh.
Toimal mme 15 TeE INSTAUT AFTER THE Toe 1S PROFPED,
FINAL TIME 15 THE (NSTAUT AFTER THE EG6 sSTefs,
INITIAL ENERGEY 15 GRAVITATIONAL POTEMTIAL. FINAL ENERGY IS 2eR0,
TwPuT EnEReY 19 2Ep.  DuTeuT ENERLY FROM. STOPPING  FOLCE,
Assome THE EBGL Leds ON A SOFT PAD THMAT EXEETS A ConSTRuLT
STOPrinG FORCE O THE EGGQ,

DESCRIBE the PHY SICS

Diagram and Define Variables

TotTiaL TRAVSFER, FivaL

Yot e V0 v Y-+ Vo= 7

} Y‘.’."'Yl = AY'L =4.0m
Y= 7
Yi-Yo= AY,= T
Yo= Om :
1 F m= 0.20 ﬁ(ﬁ
Yo Y. =+ Vit F= 80N
Yo T Yp""' Yo =1 © V;:O

Target Variable(s) | - : A: :Yj
{ 1

Quantitative Relatonships

E-{-" € = Ein - Eout

Ep=0 Ew =
E; = GPE; Eot = FQYI
GPE; = may,
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ELAN the SOLUTION

Construct specific equatons Unsoowin)
Fivo ﬁYl: DY|
Fino Epx: "

) [+]
E7-Ei = F-Eunr E;
@ E. = Eout

Find E; ¢
£; = Mg s 2
Fivp Y:_ :

BYa = Ya-, Y.

FIMD Yl:
BY. = Yi=Xs

@ DY, = Y,

0

Check for sufficiency
5 LNKNOWRS (bY- ] EM; Ei; Y, Y:)

5 Eavamowns (T, I, T, TX, 3T )

Outline the Math Solution

Sowr @ FOR. Y, AWD PUT ImTD
Sewve FOR Y, AmND PuT 7O @

50\_\1'&'@ & E; AND AT INTD @

Sewve @ For. E.o+ AWD rut ».rrv@
Sowve @ FoR DY,

Y P
Follow the Plan

Sewe @ 2y, = v,

Por wro(@) BY, = va - oy,

Sewe @D By, + BY, =V,

Por o Ei= mq (LY, + by,)

E; = mq (.ay.l + by.)
For wro @ mg (8Y +8Y,) = Egus
wa (BYs+BY,) = Gt
Pr wro @ wq(Bya+oy,)= Foy,
mqoY, + mq sy, = FaY,
mq BY2 = Fay, - mgby,
mq OY2 = Y, (F-maq )

g DY,
—Fﬂm—f = &Y

Creek Umnits: [Kq) [~/s2] ()
T NI - [Xed0msd)

= D930) _ [N][m) = [»]) ox.

R TS R )
Calculate Target Variable(s)

Ay, = (0:20%8)(2. B m/5)(4.0m)
"7 (Bow) - (0.20kq)(q.B™es)

LAY, = 0.10m

\Y N
Is Answer Properly Stated?
Yes. bYl 15 1IN METERS , A DISTRACE LVIT.

Is Answer Reasonable?

Yes. O.10m = 10 cma. Tuis smms LIKE A
RERSOMAPRBLE TPISTRRCE THAT AN ELGGE WOULD
SWE INTD A  SOFT  FAD.

Is Answer Complete?

Yes. BY, mvst B€ AT LEAsT O0.10M W
ORDEE. For A BO N FORCE NOT TO BRTAK
Twe EaG.

’ 5-13
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Problem #3: Show that the minimum distance needed 1o Siop a car maveling at specd v is v2/2ug, where M 15 the

cocflicicnt of friction berween the car and the road and £ is the acceleration of gravity.

EOCUS the PROBLEM

Picture and Given Information

v V=0

G

h,‘/ AL = COEFRILIENT of FRICTION
E: BETWEEN (Al aND RDAD,
Question(s) |, fuar 15 THE DISTANCE REGUIRED FoR TWE CAR TD stop 7
Approach USE BLERGY (OWSERVAT)ION. DEFIVE THE SYSTEM T© BE THE can.
Ivmiac TiME 1S THE INSTANT Twe CAR smcts To SToP.
FinaL TME 15 THE JUSTANT TE  cAR STOPS.
DuimiaL ENERGY 15 KINETIC . FivAL ENERGY IS =2ERD.
Torur envereY 1S aero. OvTPuT EVEREY From  FRICTION.
IB
Diagram and Define Variables
Toimiar StTaTe Ewerscy  TrANSFER Finar Stare
Vi
—n——-—né .F
Vy=
—-::—“————..fx =0 1 [ me * -
Xe X4 Xo X, +X
¥e=0
Vb v X = 2
v &X.: X| - XO V O
ms 7 £-
m =7
Target Variable(s
R ) Lruut') AX
Quantitative Relationships
E‘F - E" E|h Eh'*'
EF =0 Ei.=0
1 < .
E=zmV; E.i= fox f=pu by 2k =0
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PLAN the SOLTUTION

Conswuat specific equations Unssoworo
FinD &X ¢ ay 4
D Eut=fox 6, f
Finp E.U+=
E.r - E; = Ein- E‘u+
O-E; = 0- Eput
@ El = Eou+ Ei

Fiup E;:
Ei=gmV m
Fivp F ¢

f= uF, R,

Fimo ru"

'J'_F'?:O
@ W=k, =0 W
Fn-ﬂ) W

W= mg

Check for sufficiency

T Unxnowns (DK,E..&,'F, €, m, Fw;"“’)

e Eouations (T, Ir, T, 7, Y,"Q‘J‘.)

SInCE  BOTH TERMS Inv EQUATION T ssuvoLVE
MASS, THE Aaass SHOULD CLANCEL ouT,
Outline the Math Solution

Sewe (XD For W Awp PvT wro @
SoLvE @ FoR. F, awp pur im0 )
SewvE (TL) For £ Awb foT IvTD €3)
Sewve (IM) por E; awe por vro (D)
SowvE @ FoR Eoput Awp rur wro(D)

Sol_v'e@ FoR. AX .

CEYETT w
Follow the Plan

CHeck Varrs: .
= [M/S ] v - [Mls "]
%] 0%

Calculate Target Variable(s)

5X=Z0g

EVALUATE the ANSWER
Is Answer Properiy Stated?

Yes. THE AMSWER 1S 10 UIMITS Of DISTANCE,

Is Answer Reasonable?

Yes. Tt MAKES SENSE THAT THE GREATER
THE VELOCITY oF TWE CAR THE &EEATER THE
SToPARG DISTANCE, AWD THE GREATER THE
COEFFILIBNT OF FELICTION THE SHORTER —TwE

STerPsG  DISTANCE,
Is Answer Complete?

YES. WE SHDWED THAT THE STOPPAING
DISTRACE 1% VyéMfS'

o E"V‘] c.K,
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Problem #4: You are a driver who always obeys posicd speed limits. Late one night you are driving on a
country highway at 55 mph. Ahcad you see a sign that says, "Curve Ahead 200 feel, Slow 1o 35 mph.” You are 30
feet from the sign when you first sec it. You begin 1o apply your breaks at the instant you pass the sign. You slow
your car down at a rate of 7 mph each second. As you reach the curve, are you traveling within the posted

imit? (Note: This is the same problem that was solved usinr 2 kinematics approach as example 3 in Chanter 2).

EQCUS the PROBLEM

Picture and Given Information

Vi =SS mph. ° Decricenre Tmph each sec.’

: i

)

—_—> e, S

* 30 FT : 200 FT :

HAT |5 THE SPERD of THE CAE LHEN T RERCHES TdC ruu.uE.?

Question(s)

Ts s SPeeD LEss THAN 35 mph ©

Approach Tﬂlﬁ FROBLEM Can BE SOLWED USING EITHER KINEAMATICS aR ENERLY COnGERVATION-
USE  CowSERVATION OF EweRGY, DERINE THE SYSTEM 70 BE TvE CAR.

Tunmiavn TIME 15 THE INSTANT THE DRIVER HITS THE BRAKES.
FINAL TIME 19 THE INSTAUT THE AR LEACHES THE CURVE,

TwfuT EmNEREY 15 2ERO. OuTruT ENEREY DUE To FRICTION FoORCE.

Taimar enerey 15 KiveTie,  FiwvaL  EnEReY Kiweric,
DESCRIBE the PHYSICS
Diagram and Define Variables
TwiTiIaL Tmagﬁeﬂ_ - _F;_u_n:h_
; V;
® P B ) e
" n "
Xe =0 Xo=0 cmabid Xez20084
—_—— e —
Vi = 55 mph V=% AX=200FT Vp=T
mz T Fr=7 a=(1 "“/f-.r)/szc m= T
m= T
Target Variable(s) ‘ Fivup V'F '
Quantitative Relationships
EF" Ei = Ein- Gt
EF = KEF E-.h - 0 )
E, = ke, Eput = Fr X (for comwstamT F—on.ct')
KE = %_ mV
5-16

Fe=ma
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PLAN the SOLUTION

Consrruct specific equations
Fiwp Vg
@ ker=imvd
KEg:
KE¢= Ef

Usnermowon

KEf ) Laal
FuuD

@

Fiup

@
Fivp

@

FinD
& E.,.,+

FUJD FF B

F,FT- Mﬁk

m
]
_f'TI
1]

E;h" Eov't’
= - Ebu+

E; E-lw'f'

¥

m
1
m
1

Fr 8%

Check for sufficiency
T UNKNDWNS (V,c, KEf, m, Ef, E;, Cout E:)
0 Eauations (I, T, 00, I, ST, VI )

SINCE EACH TERM 1v EQUATION II WwvoLVES MASS,
THE mMASS SHOULD CANCEL oOuT.

Qutline the Math Solution

Souve @ Foe Fp Awp puT ww@
Eptd AND PUT n.rro@
Ei AND fuT D
Eg avo PUT nTO @
KEs awD fuT V1O @

ol \/_F.

ENECUTE the PLAN

Follow the Plan

SoLve @ F: = mos

fPvr ivTo @ Tt = (Ma) LY

SowvE @ Eot = MaALX

Pur m'm@ Er-E; = —masx
Sewve @ €= -_i,-_w\\/-'L

Por o (TD) Er-zmVii=-maosx
Sowc EL";I_MV; - A BX
Ror woro KEfz + mViT - masx

SDL\JE‘ @
Pu‘!" INTO @
Sowve @

KEr = 2 mV4t- maax
NV E- Maox =
]
Vit
Y- 200X = \,*

L

:_P\VF?-
L,

- abX :'?__V-F

JV;"- 2asx =\,

Cuece Umnits :
= JL"‘%{r]l -
= [ T -
- J’ R

Calculate Target Variable(s)
Ve = (55 )" - 2(1%Y 200 Fr)

i ][]
< E(.] [ ]

ﬂv’u»—
5(-:

("]
(™)

0

‘V{: - 33.4 "‘/HYJ

EVALUATE the ANSWER
Is Answer Properly Siated?
Yes. THE ANSWER 1S 1w UNITS oF  vELOCITY.

Is Answer Reasonable?

Yes. 23 mifur 15 VERY ClosE To THE
POSTEC SPEED DF 35 mi/Hr,

Is Answer Complete?
No. WE DID NoT ANSWEL THE @UESTION -

THE CAR SitoweD To LESS THAN 25 mi/ur,
THEREFORE, THE CAR IS TRAVELUNG wmw

THE PoSTEN SPeeD.
5-17
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Problem #5: A water shide 15 42 m long and has 2 verucal drop of 12m. If a 60-kg person stans down the slide
with a speed of 3.0 m/s, calculac his or her speed at the bottom. A 120 N average fricuion force opposes the
moton. Based on Jones & Childers 1992, problem 6.41

IS the N
Picturc and Given Informauon
an 0K
120N
12 m 42

s

I A SV B S TN W A Ja R R i S i e S i B S L 4T e e ek SEESR S S

Question(s)

WHBT 15 T IMITIAL  VELOGITY OF THE SLIDER 7

Approach Us€ (O~SERVATION OF ENERGY.

DEFINE THE SYSTEM AS THE EARTH AND SLIPER.

TuimiaL TME 1S THE INSTANT  Tre SLIDER. STRRYS SLiDing.

FinaL TImME 15 THE [WSTAIT THE SUDER RERCHES THE BoTrosa OF THE SUDE.
TwITIAL ENERGY 19 KINETIC AVD foTerTIAL. Finval eweRey 15 KinveTic,
TwpPut BENEREY 15 RERO. Dutputr ENERLY FROM FRICTION.

DESCRIBE the PHY SICS

Diagram and Define Variables
Toimiav TeawsEer B i Yi= lZm Ye=0Om
V= 20mfs Ve="7
F ' w= D Kﬂ
\. AM= 42 m
LY 4G2m F=zl20m0
Ve
Y¢ \
Target Variable(s) Y
1
T
Quandtative Relatonships
E'F' = E‘ = E_;“ - Eouf
Er= KEf Ew=0
KE=%mv™ E,t= F by ( convsTtarnT Foﬂ(.i)
E; = PE; + K.E;
PE = ¥y
5-18 e mMy oY
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T AN the S :

Construct specific equations Lokssons)

Fop Ve

@ Ep=gmVy Vs

- Fiwo E-F: Er

@ Ec-E = - Eny Ei ,Eu
FIMD Eis

@D E:= £ mVi'+ may:
F‘IDJD E'-,*:

(D) Ent = F2X

Check for sufficiency
4 Uuwsowns ( VE, E, Ein, Eouk)

4 Eauatiows (T, I, 0T 7 )
Outline the Math Solution

Sowe(T) For Eut avd pur o ()
SoLve FoR. E; AwD rut ;m@
Sowve (@) For Ep awp for o (D)
Save (T) fow Vg.

EXECUTE the PL AN
Follow the Plan

Sowve Eon = FAX
Por o @ Es-E = E, - F&X
SOL\’E @ E-' = -;,_‘_MV;'L - msyi

(o)
Por wro (@) E¢ - (amVitrmay;)= E - FaX

Ee=(amvite may: ) - Fo
for o @ ::,_'m\/il+ May; -F&X = -l—zm\/;'

Sowe‘@ _.'lMV;lﬂ-M%Y;—FDX-

L
= A

2 . _2FbX _
\ _\/7\’1 + D'ﬁY| -_W\-- = V‘F

Crmeyr Uamits:

) w/ (3% + (%)) - 30)

N

Cxq)
= J%] s [%] - (581w
(kqd

- J 0 s (- [%]

= ["1 ok

Calculate Target Variable(s)

™ ™ - (42m
V.F'-'J(?’ %) + 2(2.8™/s2)(12m) 2%3—)—')

Vp= B4 "‘{5\

LY A 2 ANSW
Is Answer Properly Stated?

Nes, Tre AVSWER 1% 1w uwiTs oF VELOCITY.

Is Answer Reasonable?

Yes., We would EXPecT THE SLIDER To 6D
FASTER AT T™E BeTTo™M PF Trre SLIDE.
B.4 ™le sEBMS LIEE A EEASoIABLT SPEED.

Is Answer Complete?

Nes. We oD THE  Speed OF THe SUDER
AT THE (OTTOM. DFE THE SLIDE,

5-19
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Problem #6: Every winter you hold an annual ski
tow rope which is used 1o go fro

usually loses his balance when a tow 1o
hill that is 328-ft long. The tow
sticky snow exert a

Similar

pany. Most of your friends are good skiers and can handle the
m the lodge 1o the first chair lift. One of your friends. who weighs 176 pounds,
pe pulls him more than 5.0 mph. This tow rope pulls people up a 12 degree

rope also exerts a 62-1b force on the skier, and the 4.0 mph wind together with the
<5-1b force that opposes motion up the hill \Ygi your friend fall?

to Jones & Childers 1992, example 6

Picture and Given Information

Question(s)

Approach

WiLL TME SPEEp oF THE SKiER BE GRFATER AN Smph BEFME THE BND oF THE HMILT

USE ENERLY CONSERVATION. THE SYSTEM 1S THE SKIER AND EARTH,
IITIAL TIME IS THE INSTANT THE SWIER STARTS ACLELERATING.
FINAL TIME 1S THE NSTAMT THE SKIER REACHES THE TDP OF TME HiLL,

DnTisL eNERGY 15 2ERO. FuuaL ENERLY 15 KINET\L AND ER™WITATIDNAL PoTenmAL.
ENERLY TRANSFERED INTO THE SYSTEM VIA TME Tow ROPE.

ENERGY TRANSFERED OUT OF THE SYSTEM VIA SNow AND wwinD FRICTION ,

Assume THE FORCES DuE To THUE oW RofE AND THE FORCE DVE TO THE spow
AND  WIND  FRETION ARE  CONSTANT FORCES,

Tre woemaL FORLE 15 PERPENDICULAR 70 THE DIRECTION oF MOTION 50 IT DoEsay
TRAMSFERL ENERLY NTD OR OUT OF TWHE SYSTEM.

DESCRIBE the PHYSICS
Diagram and Define Variables

IwvimaL Strarte

Ewerey TRAWSEER_

Fivar State

Xe=deos© e=12
Target Variable(s) Fino V-F ' d=328¢r W= 176 b

i V vy
— WV
7 - YT —
“‘-/’ * a_ ——1
Y —
1% b =—39 — 4x
v Xe
ox D F'_::sz Ib .
2:'—0 fr=251b Ye=dswe  vp=T

Quantitative Relationships

Er-E =E, - €4

Ei =0 Ein = FI-'C‘
Ef-’- KE’.‘; ~GPEs E..t = F¢ d
KE = émvz

GPE= may

W'-:I'nj
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PLAN the SOLUTION
Construct specific equations Uokssows)
Fuwp Vgt Ve
@ KE = %mvy KE;
Fino m :
@ wW=mg
Fuop KEf:
@ Er='KE; ~ GPE; €/, aPEf
Find GPEf:
GPEfF = mays Y+
F\UD Y'F:
@ V¢ = dsmwe
Fiwp Eg |

@EF E: = B~ Bt B, Eort

Check for sufficiency
B Uanowns (V.{.‘ KEr,w, E;,GPE; Y£, Em,Ew'l‘)

& Eovamiows (T,00,IX W, v, w1, O o)
Outine the Math Soluton

Sowe. For. G, AND PuT n.n-o
SoL_us o Ej avD #VT rm-o@
Sow'z@ Fok. €f awp PuT ,m@
Sowe (G) Fok Y swd fuT oo @

Sowve (D) Fot GPEF awo poT wro ()
SoLvE @ For. KEr awp evT D @

Foliow the Plan

Sewve @ B+ = FBd
Purlm-ro@ Ef-Ei= B - Frd
SDWE@ |h" FA

Prwme @D E-Ef= Rd - Fed
Sowe @ Ef=FRd-Fd

Pu'r'u.rr'l:: Fd = Fed = KEf + GPE;
Souve @ Y¢= dSimwb
Por woro @ GPEg = Mad Swé
Sowve @ GPEp = Mad SInB
for poro (T Frd - Fed = KEf + mad smé
Sot.\JE_@ Fd -Fd- ma‘{s:ue = kKEp
Por r--’TD@ Fd- Fd —MgdSmQ:‘;",MY;
SOLUE@ W = Mmq

Moo

)
for oo @ Fd - Fd —(Had sINBe = z_(-—)\/,p
Sowve @ d(f-Fe- -Wswp) = ——-V;

Qsd Fr- FF"‘"\’S"JQ 1

[n/s;][n](mﬁl bod-(vd) _ e a7 o
J TS &) = [E]°

Calculate Tarpet Variable(s)

Ve :\/2 (32 772)(32BFT)( 62 b= 25 Ib~-176 1L 2NIZ°)
176 I1b

V: = 7.0 FT/S

EVALUATE the ANSWER
Is Answer Properly Stated?

Yes. THE  ANSWER 1S 1 UONS Bf SPEED.

Is Answer Reasonable?

| -
ComvERT T mPR. (1’0 e ) se 5?;0“)(3———-‘[{’?3_') = 4.8 ™
TWIS 1S SUGHTLY FASTER THAN WALKING SPEED,
WHIKH SEEMS LIKE A REASONABLE SPLED fol A
Towt ROPE.
Is Answer Complete?

No. WE musT comeane v ENAL SPEED TO 5.0 MW
48 ™Mur 15 LESS THAN 5.0 MV THEREFORE, THE

SWER  WwoULP NOT FALL BEFeRE  BEIMG  PULLEP
VP T™™E HiILL.
5-21
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Problem #7: A 1200-kg car maveling south at 24 m/s collides with and anaches itself 10 2 2000-kg truck

traveling cast at 16 m/s. Calculate the velocity (magnitude and direction) of the two vehicles when locked wgpether
after the collision.  Based on Jones & Childers 1992, problem 7.37
EQCUS the PROBLEM

Picture and Given Information

24 ™

1200 Ky

e ™/s !
e S

15 ™E  vEwaTY (MAGUITUDE AND DIE(-CTIDLJ) OF THE TwD VEHICLES
WHETN LOCKED TOGETHER. AFTER THE COLLISION !

Question(s) \adikace

Approach

P Use momeENTUM  consERVATION, THe SYSTEMA 15 THE AR AND TRUCK.
Twtmiar TIME 15 THE INSTANT  BEFORE VERICLES colLIPE.,

FinaL TiME 15 THE INSTANT AFTER VEHRICLES COLLIDE AND mMovE AS oME.
Twtrial. MOMENTUM FRDM MDVIMJG CAR. AND MDVING TRULK..

FinAL mMomenTun FROM THE LOCLKED VEMRICLLES movinG AS ONE.
No  momenTum TRANSFER FROM THE ENVIRDNMEMT.,

DESCRIBE the PHYSICS
Diagram and Define Variables

Twitiaw STeTe

F-nuA\. STaTE

7
T ‘1"){ 5 +%
k a
| P
F
Y +Y
My = 2000 Kq ™= 1200 Kq M=3200 Kq
V'rx't? 1o m/s Vexi= O Ve= T
Veyiz Omfs _ Veyiz 24 ™s e=7
Target Variable(s) B0 V-F, e
Quanttative Relatonships
2 Y - P - P = Pr ity =
PF - Pl = P+l-.ﬁh6'l"f.' P x Yresme : FL.-...;,F" =0
Fey= Pip= Pisunstor y
P = M\’,‘ < 2 PY
¥ P =Px2*PY S'UG:T’_
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N the N

Construct specific equations Uk s owiss
Fimnp Vg ¢ N
Fivp P'F,:

@ p2=85+ P I 3
Finp Pr.:

Pex = Fix = Prvansfer x

Pex - e =0 P;x
Fuwo Py
@ Prse = oy Y
Fivp P;Y:
= Py = Pivansder y
@ P-FY fiy =0 Py

Fiwo Fiy !

@ .F.‘Y = e Veyi
Fiwo & e

Sme‘r—*—iii

Check for sufficiency
T Unewownws ( Vi, PE; Bhw; By, Cin, P;.,,G_)
7 Eausmows ( T,T,NT IV, %, YT YT )

Qutline the Math Soluton
Fivo Vg

Sowve @ For P‘Y AND PUT vTD @

Sowve @ For Pry AWD PUT VT @
Souwve @ FoR Fiy Awp puT wvo (ID)

Sowve FoR fr, Amo PuT INTO @
Sewve @ Fok fr awp pPUT INTD @

SDL\JE@ FOR V.

Five B

Sowe @ FoR  Pry aAwp puT anTO

Sowe For. Pr AwD PuT iw‘m
SowE FoR. ©.

Y 1 Pl
Follow thc Plan

Sowe @) PBy= wieVeyi

Por ,um@ Pﬁr - wmcVeyi =0

SoLve @ Pey = wre Veyi

Por T @ s P.;;-*— (wae Veyi )

Sowve @ Pix = wip Vi

fur wTo Pey = maVexi

Sowve F.;,( = ™My V-.,-x',‘

Por woTo @ Bt = (""Tvni\z + (me chi)z
Sowve @ Pe :J(MTVﬁ;)l + (me Veyi)?

Por wro @ J(MTVT;LE)-L* (Mchy'.)l = mv-{-'

Sowve @ \ JTMTVTKE31 + (me Veyi ¥ = V.p\

e

- Sowve @ F"FY = W¢ chi

Sowve @ f’.‘t = J(W\T V‘rxi )1 + (Mch-yi )L

Pur mTD SO = _™Me Veyi J
)

(mar Vagi )t + (Me Veyi )t

ek Unirs 't CHECK UNITS ©
J O edevedt | . __Lepl~e) _
2y Sk ) 4 ([xq10~61)"
= (4] _ revey 0.K- - [xa3(™6) _
o = o T e S L3 OF
Calculate Target Vanable( s)
Ve N((2000%8) (16 ™))" + ((1200K8)(24 s E
(2200 Ka)

SwB = (1200¥a)(24 s
fzpmva}l[w"v‘s}’} +((1200K8)(24 = ))*
smes.
V IS R
Is Answer Properly Staied?
Yes. THE ANSWER 1% IN UNITS OF VELWDCOTY,

Is Answer Reasonable?

Yes. THE Two VEHICLES ENC uP 42° soom
oF EAST. SintE BoTH VERILLES HAD ABOUT
THE GAME INITIAL MOMENTLA , THE Fiualc

ANGLE <rioulD BE CLOSE To 45°

"1s Answer Complete?
Yes., THE ANSWER INCLUDPES BoTH e
MAGLITUDE AND DIRECTION .
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Problem #8: A billiard ball at rest is hit head-on by a second billiard ball moving 1.5 m/s toward the east. If the
collision is elastic and we ignore rotational motion, calculate the final speed of cach ball.

EOCUS the PROBLEM
Picture and Given Information

=7 i
'-15""/5 V=0 : v
OO
M, m,

Question(s)  \\fuaT 15 THE  Fiuad SPEED  OF EACcH BALL T

Approach Use MomenTuM conservaTion. Tuae SNSTEM IS5 THE TWO BILLIARD BALLS.

TinmiaL TIME 1S THE INSTAMLTY BEFORE THE couwasion.

Fimar Timg IS5 THE NSTANT AFTER THE COLLIS 1D,

TenTIaL PMOMENTUAM |5 THE MOMENTURA OF THE FirRsT BALL,
FINAL  MOMEAMTUM S THE MDMENTUMM OF BoTH BALLS AFTEL CcoOLLISION],

Alco USE ENEREY CoNSERVATION.

ITMiTiaL eNERGY 1S KINETIC. FINAL  ENERGY > KINETIC.
Assume THAT THE MASS OF THE BAUS 15 Tue SAmME,
DESCRIBE the PHY SICS
Diagram and Define Variables
ToimaL State FivaL Smarc
- =
i Fe
=
Wi, = Wy = A —ﬁ =
) 1€
Vii= L5 Vii=0
Vie=? Vg =7
Target Variable(s) LF wo Vg , Var
Quantative Relationships
By = B = Pronsiry Ee- 6 = Ein- Bt
F}f = mVyx E{: = KE, Eiwz=O
E; = KE—{ Eout = O
= O il 2
ﬁwmc[}-,g KE=5 mV
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AN <Ol

Construct specific equations Unkvown
F-IMD Vz# : vﬂ.;
1 2
@ Ef=3mUivimGi  Ee Vi, m
Fiwp Eg:
E'F- El = Eiv\' ot
E,F E‘ = O El
FlND E;
)
B =z mVy
Finp VI‘F:
P,F’: = MV;F + MV‘L(’ &?«'
Fivp B

P-F'c" P.'x = Pin‘ - rov+x

@P;,g—Ex=O P‘-x

Finp Pig

ﬁx = W\V’;

Check for sufficiency
T Unwewowows (Vx;, G;, V.;J w, E; " FF:, P.x)
&G EguaTiovs (= o,m, &, <, %)
MASS W EACK MOMENTUM EQUATION SHOULD CAMLEL

Outling the Math Solutdon -
Sowve FOR. By AND PuT :m-o® '

FR oy awo por :m-o
Sewe () For Vi AND ror wro (D
Sowve @ FoR E; Awp. poT NTO @
Sowve @ R € awp pr IvTo(T)
Sowve @ FOR. Vi r.

To FND Vg :

=
o3

SOL\J'E'

SOLV'E

EXECUTE the PLAN
Follow the Plan

Pisc =mV,
Py = wmVii =0
Pey = mVii
MYii = WA Vig + maVyp
MV = AVE + phVog
Vii= Vig + Vg
F’.; = Vag -'—V.cj

Ee= IE”"(V*'\ Vo) -‘.;_m V:F'
Ei= imv,d

Er = amVit=0

Sowve @ Er=3mV,®

for mro @ LVl = 2 (Vi -V ) 2 2t
V|?.-' (\'1;'\/,_;)1'* -_._‘;—

AR S LA VPRV SV
ZMiVyg =
Vi = Mog

s
F

Calculate Target Variable(s)

Vie= O
Vae= 1.5 m/s

EVALUATE the ANSWER
Is Answer Properly Stated?

Yes. BoT™ ANSWERS ART w0 uwwITS OF VELOOTY

Is Answer Reasonable?

Yes. Twe FiesT BaLL TRANSFEES ALL DE ITS
MOMENTLOM TO THE SECOND PALL.

Is Answer Complete?

Yes. WE HAVE FounD THE FINAL Sp OF BoTH
BALLS, e F'
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Problem #9: An 80- g arrow moving at 80 m/s hits and embeds in 2 10-kg block resting on ice. How {ar does
the block slide on the ice following the collision if it is opposed by 2 9.2-N force?

Based on Jones & Childers 1992, problem /.26

EQCUS the PROBLEM

Picture and Given Information

AX=?
V=80 s ~ - veoms
pE=iny
S ... D — — o |
BO o :_Ti F
I o
10
Ka ;w
K

uesuon(s
Question(s) i sa DOES THE BLOCK MOVE AFTER THE ARROW KITS THE Biock 7

Approach  USE wmomenTum cewSERVATION. DeEFINE SYsTEM AS e ARROW &nND BLOCK.
ImTIAL TIME 1% THE INSTANT BEFORE THE ARROW HITS THE BLDCK..
FINAL Timg 15 THE NSTANT AFTER THE ARROW HITS THE BLDK.

IRITiaL MOMENTUM DUE TD ARRDW. FINAL MOMENTUAM DUE TD ARROW 200D Bupck.
No mMomenTUM TRAMSFER. FROBM THE ENVIRONMENT.

Ause use ENERGY cowSERVATION.
IOITIAL TIME 15 THE INSTANT AFTER THE ARROW) HITS THE BLOCK.,
Fivas Time 1S TiE  vsTALT A

FTER.  THE ARROWw AND Blotk STOP Movidb,
ITriTiIaL ENEREY 1S KiNeTiC., FimaL ENERGY |3 ZERD.
EVEREY TRANSFER TO ENVIRONMENT THRDUGEH THE FRICTIONAL ForRcE .

DESCRIBE the PHYSICS
Diagram and Define Variables

MomepTuna Disapas

ENE‘R&‘( Dmaleg\__

Twimas Starp FiNAL STATE TinTAL ST Tr.ANS FER. FINAL STATE
—
- -
R z - R Fe
————t { ————g X — — =] — + %
ma= 80 q Mp= IDKﬁ M= 10.0p Kﬂ X X, Xy X,
\f},g:&b"'/s \{iazo V;F? l:o X;—X.:AK X‘z_:?
Vae=? AX=T v=0
R—
Quantitative Relationships
Fi"’- - f’i - ﬁb‘-‘l"!fx E: = E'; = Eik . EBU*
P;‘K= m‘hv E{.‘.‘D E;.‘:O
P.= MV £, = KE; Eicis Ecb)(
Fi'rm\’;p—x = 0 KE = EI_MV‘L
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PLAN the SOLUTION

Construct specific equations (@NTINT. IS
Fivp BX: AY
@ Eot = B X Et
Fiop Ept:
E‘F‘E; = Eih' Eﬂv"'
O— E:'| = O e Ebu"
@ €i=Con =
FlanD E_;ﬁ
! =
@ € =3 MVAB Vae
FH‘JD VAB :
Fre = MVag 7
Fivp ﬁcx :
E.Cx = F\t = Piu.g P..rhc
PC,: P. x - o P.,(
Fivp f’ix:
Check for sufficiency

b Unenowns ( AX, Gout, €, Vas, Pex ﬁ‘x)
(0 EQUATIO_'\JS (I,E,m,ﬂ,i,m)

Outline the Math Solution
Sowe @ For Pix AmND PUT uTD @
Sowve For Fe, awop fuT nmo @
SoLvE @ FOR  Vpy AMD pPuT INTO
Save .'3 FoR E; amp pur wTO @
S‘”“*‘@ FOR  E o+ AWD fuT mrC @

Sm.vt'@ PR OX.

EXECUTE the PLAN
Follow the Plan
Sowe Pix = maVi,

Pur |UTD® P;‘ - MaVi, =
Sowve @ EFx - mﬁ\/;‘.

Pur u.rro E :im(%)
Sowve @ E: = ;M(m‘:(‘“ )1’

CHECLE uwITS
_ [/ ks [“‘/s'l)"
TINIL Ik
= (s [m2) )
(k) [™/s) \ T8

= [») oK.
Calculate Target Variable(s)
_(10.09 kq) ((. 08 Ka )( 8O Ws))l
~2(9.2N) (10.08 kq) i
b= .22 m |
EVALUATE the ANSWER

Is Answer Properly Staied?
Yes. THE AMSWER 1S N UNITS OF LEWGTN.

Is Answer Reasonable?

Yes. Swxe THE Block 15 RELATIVELY PMASSIVE
THE ARRDW SHOULBMT Pusk TWE BLpck VERY FAR.

Is Answer Complete?
Yes., We HAVE DETERMINED How Fag THE
BLOOK  wiLL mMOVE,
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Problem #10: A swdent shot a 10-g spitball in class. The spitball hit and stuck 10 2 100-g scale model of the
moon that was right in front of the teacher. The model was hanging from the ceiling by a 1.5-ft string. The
spitball covered the 4.0-m berween the student and the model in 0.4-sec. The teacher has the ability 10 notice

verucal displacements of more than 2-cm. Could the teacher have noticed the venical movement of the mod=l?
Based on Jones & Childers 1992, problem 7.29

EOCUS the PROBLEM
Picture and Given Information

e —— — —
o
. IDS
r""'—-—.o-—ﬁ
jall
| S—
uesuon(s
Q (s) Dib ™€ mopeL RrisE more THAN 2 esn ABDVE 1TSS RESTIRG HEl&HT?
Approach  Use K)NEMATICS 0 Fiup HORIROWTAL VELOGITY Of SATBALL.
TWITIAL TIME 19 INSTANT AETER LAUACH. FINAL T)mE 14 INSTAST BEFORE COLLIS|IoN.
Use MOMEMTUM  COMSERVATION TO FIND SPEED OF MODEL AND SPITBALL AFTER COLLISton).
SYSTEAR 13 THE SPITBALL , MOON MODEL, AND EARTW.
TwiTIAL TIME 1% INSTANT BEFORE CoOLLISIon . Frmal T/ME 15 INSTANT AFTEX CoLLIston/.
TNTIAL MOMEMTUM IS DUE TO SPITBALL. FINAL momEATUM DUE 1D SPITBALL AND mppEL .
MomEwTUAM TRAMSFER FROM SPITBALL TO MDDEL In HorizowTAL DIRECTION DMLY
‘ BECAVSE STRING Wil EXERT AN OPPDS/MNG FORCE (8 VERTICAL DIRECTION.
\EE EMERLY CONSERVATION TO FIND FINAL HEIGHT.
IWITIAL TIME IS [NSTANT AFTER LAUNCH.
FINAL TIME IS INSTAMT MODEL IS AT ITS MAximups NEIGHT.
TwImAL BMERLY 1S KINETICL. FINAL ENERLY 16 GRAVI TATIImA . PoTENWTIAL
No ENERLY TRANSFER FROM EMVIRONMEMT,
DESCRIBE the PHYSICS
Diagram and Define Variables

Motionw Diaskasm

MomeEwTusA DIAGRAM

EWNERSY Diaaras

V, V. TwinmaL FinaL TwimaL
- ' = *y 't

%
‘*Yl l

Ax

w
)
n
)
I
=\l
o
x

X0=O X,:Qm

M= IDg M= 110q v,=0 Ye = ?
+.= ) +, = .4sme Mp = 100q Vim= 7 Vy=0
Voz=0 Wee V=T
Target Variable(s) Fivo Ya

Quantative Relationships
iz X, -Xo Pex = Pix = Prvamsferx Be-Ei= Bin - Bour
t,~ts P = mVg Eg= GPEL En=0
— . = wa Vi E:= KE; Entsr O
.V: V| 'pm— azo Cige AN - \ 2
Piremlone = O KET 2mV
tfeE= mqy
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PLAN the SO'UTION EXECLTE the PLAN

Construct specific equations U e o Follow the Plan -y
Fivo Y, ¢ Y. .Sol-vf@ VY = ‘.T:"j
@ Er= M5Y=. Es Pur m'm@ V‘=_E

FinD Ep: Sewel@D) v,

’Ei '-'E-'lh - Eout Pur IUTD@ P'x - M5(K|)

E;
@ Ef-€ =0 E; Sowve @ Fie = ms (£)

Fwp E;: Por :m@ E‘_- —msf"')=

@ IS -é-. M Vs Vsm SoLve @ ?4'-» = Ma ﬁ)
Fiwd Vi Por mw@ mt‘(i_‘)_ MVim
® oz M e @ B
Fik® ‘;‘C": b Por |m® Ei = m,x &
Fl’ - Nx = Pirn.qf",e e %
Peu- Ry =0 Px Sowve @ & = M(
Frup P,-,,'- Pur ;um@ E-F-E'_M Ms:.)
fix= mgV, Vi _ SowvE @ Ce=
Fivo V, = St G
v, : 7 N Bag- s} z'* ) e va
Fuws V: Sowe (T zﬁ(w Xi\> - YW
- X, —Xo
V= o
g CHGCV. UDTS ;
¥ (Lg:tmj)
Em/sa'] Lxql s
Ehj/ﬁ]"
T [w]) o.x.
LM‘J/B.],,
Check for sufficiency Calculate Target Variable(s)

B Unwewowws (Y‘:.‘EJ,E.‘,V:.M} fF-lc; P;KJ qu) I (105)(4.\5'-“] s
B Eavamons (T, 17, v, v, v vwr ) | Ya =m)( m)
Outline the Math Solution

Sowve @ for. V Anp PUT 1D
Sewve @ For. V, awp futT w0
Sowve @) For. Py awd AT D @
Sa.ue@ FoR. fz, AWD puT WD @

Yo=.042Z m = 4.2 cm‘l

\Y !
Is Answer Properly Stated?

Yes. Twe AMSWER 1S v uniTe oF LENGTH.

SoLve @ Fok. VSM AP puT IIJ'TD. & - —_—
Sowe @ FOR. EF AND PUT IWTO @ MOVE A MODEL VERY MucH.
Sowve @ FoR. Yo .

- Is Answer Complete?

Ne. WE HAVE NoT ANSWERED THE QUESTION.
THe TEACHER wWAS TRE ABILITY TD NDTICE
VERTICAL DISPLARCEMENTS DF MDREE THAN 2.0cm.

SINCE THE AMDDEL RDSE 4.2 cm , THE TEACHER
CouLD HAVE MNOTICED THE MBVEMENT OF TmE

MODEL . 5 _ 29



PER Office
5 - 29


Problem #11: An ice-making machine removes heat from 0 degrees Celsius water at a rate of 280 J/s. Calculate

the ume needed to form 2.0 ke of ice at 0 derrees Celsius,

1S

E

Picwure and Given Information

2.0\(3 . J N Removes HERT AT A gaTe

N °F 2B0 Jfs.

0% e |

Question(s) ;
Hols MEH TIME DOES 1T TAKE TO ComverRT 2 kg of 0°C wauiD waTer
To 2K of 0O°C ice?
Approach  Use enexcy ComsErvaTioN. Swstoaa 16 THE WATER.
ITomiaL TIME 19 THE INSTANT THE 106 - MAKER. 1S SWITCHED o,
FinaL TIME 15 THE WSTAVT ALL OF THE LUEVID wWATER Turs o |CE.
IITIAL BENERLY 1S INTERNMAL,  FivaL ENERIY 1S (NTEIUUAL.
ENEXGY TRAMSFER o EMVIROWNMENT  ViA  |CE- MAKER.
AssumE LATEL oMLY LOSES HEAT TD IcE-MAKER AND THERE 1< mo
BCTElmA L HeEAT LDSS, )
DESCRIBE the PHYSICS
Diagram and Define Variables
TwiTiae StaTe Enersy Teavspewr. FivaL StaTe
(Liouin) Cour (Sain)
T =280 Y,
m= 2.0 Eﬂ
T; - D'C— m= 2'0 %
T_‘c: el o
- g
Target Variable(s) Lf=33x10° Yy
Fimo Ot
Quantitative Relatonships
E—.{."E—; = E;h’ out
Ee= (1B ) Est= ¥ Ot
ﬁlEicr.:

(IE.RL; - (E);

1

DIE -mLf

Similar to Jones & Childers 1992, prob.

11.47
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Construct specific equations U_M
FyvD Dt &t
@ E.+=rdk Cout
Fivo Eput -

E-F' EI- - E-iu = Eov"'

E—;‘E; = O"' Eou-‘
@ e-E=-Cor ¢, €
Fioo Ef:
E¢-Ei = DIE,, BIEice
Fiwp f)lgi‘c:

@ A‘E,q = _ML_F

Check for sufficiency
5 UN\CLDLJNS ( a*—_, Eau+; E-F, Ei ) bIGi;()
4 EavaTions (I, IT , IT, IL)

TwWe EQUATWNS COITAIN 4
ONE willL CANCEL OuUT. Ee avo E -HD’EFLMT

Outline the Math Soluton

Sowve @ For. DIE,, AWD PUT mro
SoLvE FoR. E£ Anp puT ivTO @

Sewve @ Fe. €t avp pT o (T
SDL\JE@ PR Dt

583 LAN
Follow the Plan
Sove @  DlEee= -mlyg
Por 1vro @ Ef-Ei = -mus
SoLve @ Ef = & ~mlg
for wo (D E-mls - B = o
Sowve @ -mlg =-E 4
ML; - Ebu*
Por wm@ mle = vk
mLg
o]
CHEL wvinTs:
= [E-:,']E'Vi:g] - [53[36_[:_53 = [s) B
%] Ted 3
Calculate Target Variable(s)
2.0K)(3.3%10% 4y)
bOt= ( %5( 3 “ = 2357 sec
(180 %)
Dt = (2357 see)( o ) =139 min = At
EVALUATE the ANSWER
Is Answer Properly Stated?

YES. TuE ANSWER 15 1w UMITS OF TimE.

Is Answer Reasonable?

Yes. T woould EXPECT TO wAIT BVER A BALF
HCUR T© MAKE OVER 4 pouwDs of IE (2 K‘D)'

Is Answer Complete?

Xes, We waAvE powud THe AmbunT OF TIME
NEEDET) TO CONVERT 2.11;5 OF UQUID wATEL
TO IcE.
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Problem #12: Calculaie the amount of encrey necded 1o chanpe a 0.50-kr block of ice at 0 dcgrgcs Celsius into
water a1 20 degrees Celsivs.  Similar to Jones & Childers 1992, problem 11.38
<

Picture and Given Information

O.SOK3 0.50 Kay
0% 52 {2 ol =%

Question(s) How muer ENERLY MuUsT BE APDED TO O-E‘Dzﬂ oF e ar O°% =-o
OBTAINY LUATER AT 2p°cT
Approach Use ewercy

COMSERVATION, TTRE SYSTEM. 1S THE \WATER

INITIAL TImE 15 THE

INSTAMT ENERCY |S ADDED TO T™C SYSTEAA.
FthAL TIME 1S THE

INSTANT THE WATER REACHES 20°c.

TwiTiaL ENERGY 1S INTERNAL. FivaL Ewerey 1S IWTERMA L,

EWERGY TRANSFER FRDM EAMVIRONAMENT TO THE SYSTEM,

ASsomE NO ENERCY TRANSPER. FRDAA THE SYSTEM.

) 1B P 1
Diagram and Define Variables

Tormia STATE Evexcy TopuT

Fival Stare

(lmwo)

[ ]

(u:tz)i

T C } T;=20°¢C
= 0.50K .
:;\ D 5 3 _J/ thru‘l‘
wter = 4160 tfca"t
L= 3.35%10°% Yy
Target Variable(s) :
Qihru*‘
Quantitative Relationships
E-F - El = E;h = Eo-'\'
Ep= (‘Eum}ﬂ-); -!-(iE;“]; Eih:Oi..fv'*‘
E{': CIE\'\&%")F*'(IE;LQ).F Eot =0
5.32 DIE(KE)= m(C OT

DIE(PE) = m Lr
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SLAN the SOLITION

Construct specific equations Unkwownw
Fiwo G;...Pw} : Q""P""I'
@ tinz Qupt Ein
Fimo .

Ef-E, = E-Eot

@ Es-e =k Bz, E;
Finop Eg:
Ef-Ei= DB *AlEpater  DIE;,
Fine DIEe :  DYE uder
BlEice = DIE(PE ) ive DIE(PEDice
Fivo BIE(PE ), :

blE(PE);n = mly
Five BIE L ie:
@ AIE uder = OVE(KE ) ier OVE(YE) L er

Fiwp QIE(KE)M.}":
QlE(KEijQV = Mc‘“ﬁcr AT

Check for sufficiency

8 Unknownss(Qinpt, Ein B, E:, SlEic, DI e, AIE(PE ), MIE(KE)_, )

7 EevaTionsg (I,I!:,IIL‘,'N,EE,‘Z[,EH

Two BRUATIONS ComTAIN Ef AND E. HoPEFLLLY OwE
WILL CANCEL OUT.

Outline the Math Solution

SoLVE‘@ FoR. DIE(KE) i AnD b n.ﬂ'b
Sowe (@D For. DlEpader AND poT o @
Sowve () ror BIE(PE);, awo pur wm (I7)
Sm_vE'@ Fok DIE;e AwD puT vTO @

Sewve FoR Ef aun pur @
Sowve @ PR € avp por o (D)

Sowe (D ar Qinput.

-

Follow ihc Plan
BIEIKE Yuader =i € BT
Por wro@D MEiier = mCo AT
DA\ELdev = m Ciuites BT
Por o @ E6-€ = DIE;e +mC . BT
OVE(PE) e = mLyp
DIE,, = MI,—-F
DIE;, = mL;
Ee-Ei= mLy + mC 1. 0T
Er=mlr+mC 4, 0T+ E;
mblp+mC i, AT+ E-E =g
hnL.; tm Crader OT = E:ih
mlremC i, AT = Gihrv"‘
w(Lg +C e BT) = Qinpq

in

CHece uwiITs S
— [Kﬁj(['!/ K:‘] + [J/g%'r_-lco‘:])

- [K‘j)( [J/zs-_\)
=[J] 0,

Calculate Tarpet Variable(s)
Qicpot = (.50 [(3.3; xio‘-yga)-r(qtso-,"%.f_}(zo-c)]v

Qupt= 2.Ix10° Jw

Is Answer Properly Stated?
Yes. The AMSWEL 1S JouLes.

Is Answer Reasonable?

Yes. Paase cHANGES TRRE MUCH MORE ENERGY PER ¥q
THAN SIMPLY RAISING THE TEMPERATURE,

THELETORE, THE ANSWER SHoulh BE LS To THE
PHASE (CHANGE ENERGY PER Kq.

Is Answer Complee?

YeS. WE DETERMINED Mo mucH ENERGY 1S
NEEDED TOD [HAME A .5‘01{3 BlLoCK PF WE
AT 0O°C TO wWaTeR AT .20°%¢..

5-33
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Problem #13: The 1.0 X 107 kg of ice in 2 small pond has an average temperawre of -5.0 de
the middle of winter. A movie making company wants 1o conver the
special effect. How much heat must

grees Celsius during
they add 10 the frozen pond?

pond 1o 100 degree Celsius steam for 8 movie
Similar to Jones & Childers 1992, prob.ll.

Pictre and Given Information

m=1.0x10" Kay
T= ~S.0%C

=Y

How mver WEAT muT BE_ADDED To THE PowD N ORDER 70 TuRN
IT WwTe  |OD°C sSTEAMYT

Question(s)

A h
Pproac Use ENERGCY (pMNSERVATION. SvsTem

TWITIAL TImE S THE
Finae +,me 15 THE

12 T™Me PoMD Aub WATER,_ .

INSTAWT BeEfor€ GENERATDA 1S TURNED oN.

INSTAAT THAT ALL THE (JBULID LVATER HAS TURNED To STERASM
Im-nm._ ENERGY 1S INTERNAL. Faual eveRcy 15 INTERMAL,

ENERLY INPUT FROM EAVIRONMEMT DULE TO HEAT FROM GENERATOR .

AssumE NMD HEAT TRANSFER FROM Sysrpma 7D EANVIROAMMER T,

DESCRIBE the PHYSICS
Diagram and Define Variables

TwnaL Srare

Enverey Travsren

FivaL Stare
T=-5° ’ } T=100°C
m = I.OKID;MS Qivgut Ly = 2.3210 Yy
Lp=33x10 J/gj Comber = 4BO Y o
Cice = 2090 J/“a oc
Target Variable(s)
input
Quandiative Relatonships .
Ep- E; = i - Eot
E;= ('Ei:c); + (1gm40),‘ + (IES.},‘“\; E.= Q.‘-\Pu'l'
Ef=(1€ice)e + (1Euiter)s + 1A Ys E,+=0

sie= (1IE)r - (IE); .
BDIE(KE)= meaT
534 SIE(PE)= mL
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PLAN the SOLUTION

Construct specific equations Unesiows
Fiop Gupp Q.pet
@ Q"*M = Ein Ein
Fiwwo Ejn:
A€ + ME 1 + DIE = E, - EA
@) OlEice+ DI utert DIE o= E, DIE,,
FIND DIE;,: g:g.:::;
DlEie = MIE(RE);, + DERE),,  BVE(KE),
Fit blE(KE—)ict . OVEL(PE)ice
OLECKE };ce = mCip BT
Fiup DIE(PE);,, :
@ DIECPE) ice = mlg
Finp DIE, L, :
OVE o dev = DIE(KE) 3oy DAE(KE)_y,,
Fino  ALE (KE) e :
DIE(EEY ity =l ATt
Fivo DIE ot
DlEgtem = DIE(PE) L pure AEPE) st can

FI-ND A‘.E(Pag“m:
BIE(PE )gieum = mL,

Check for sufficiency
9 UI.JK.HONW (Qh'u‘l) E{-,b'&u, B :t--‘vc\') blE"}mhl
DIE(KE)ica, OIE(PE)iee, DIECKE ) ouier, tuECPELL )

9 Eavations (T,IT, 10,7, ¥, X, 2, v, 1)

Sowve @ For. AIE(PE) g1 un, Anp PUT mTD @
Saus o, DlEgieam AND puT ;m@
SoLve @ FoR OB (KE) . 3. AND PuT m'ro
Sowf:- FO. DIE e Anp PuT o (ID)
Sowe () ror 2E(PE); ., AnD puT o (@)
SamrE FoR DWE(KE);,, anD fuT JHTD@
Sowe (TL) FoR AL, AND foT jwTo @
SowE FoR  Ej,, AawD PuT inTD @
Sowve @ o Qihpu"'.

Outline the Math Solution

BT
Follow the Plan

Sowe @  AIECPE) s4um = mLy

Por mm@ DIE e = ml,,

Sowve @ DIEsteam= mLy

Por vvo @ 15»![:'.»tz TOIE der + mbly = E;n
Sowe b'LE(EE]....,-}n'—TMC“;,,AT..‘ v

Por 1o DIE  lev = m e BT i
Sowe(@L)  DlEryer = m it BTt

Po-r w~ro® DVEee +mC | AT | +ml, = E.,
ScL\JE@ biE(PEJ.-“ =mLp

Por w0 DIE,, = AE(KE);, + mLg
Sowe(@  AIE(KE),, = mC, AT,

Por o () MEe=mC, 0T, + mlg
SoLVE AlE; e =mC, T, v mbLp

Por lm®mc-¢ BTecrmbet mCy BToi tmaly = E..
Sowve @ mC..“tﬂ'iui-mLf Tl i, BT ale + mL,=E,,

Ror 1570(D) BT + b EMCader BTecder #mly = Qi

50LVE® mc;”bT;“f MIT-F +* mcﬂh,ﬁT.dt‘, + v-;L,, -

M(Ck. 11:.:"‘_
CHECK voITS - -
- 0 ([ )] ) W)l + 34,

=[kg)([%y)) = [3) ok,
Calculate Target Variable(s)

Q.’-p‘!‘

Ler ot BT e+ Ly) = Q;.‘P..-}-

Qinput = (1010 *@’&20‘!0"@, e)(5%¢) + (3.3x10%3¢,) +
H41B0 Hegec )(100%) + (2.3 710 iy Y]

[Ea,.+=3.1*!0'3£!

V b
Is Answer Properly Stated?
Yes. THE ANSWER 15 IV UMITS of ENERLY.

Is Answer Reasonable?

Yes. Tr TAKES ABouT TEW TIMES motE Ewensy Pen
TO COMVERT WATER. TP STEAM  THAN TD COMVERT
IE To WaTeL, DuR ANSWJER |3 ABWT TEN TIMES
GREATEF. THAN EXAMPLE § &

Is Answer Complete?
Yes. WE HAVE DETERMINED Hoiu mucH HEAT
MUST BE ADDED T© THE PonD.
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Problem #14: An clectric grill made of iron has a specific heat of 460 J/kp'C and a mass of 2.8-kg. To cook
French toast, the grill is warmed from 20 10 350 degrees Celsius by resistive heating wires that produce thermal
energy ai a rate of 1500 W when connected 1o a 115-V potential difference. Fifty percent of the thermal energy is
radiated into the room as the prill warms. How many minuies arc required 1o warm the grill?

EOCUS the PROBLEM

Picre and Given Information

m= 2.8 Kq
C= 460 Yiy-c

o . ——

E' s v

™

Question(s)  Hpis mawy MINUTES DOES IT TAKE To wazm THE GRILL ®

Approach USE ENERLY COMSERVATION. Systema s THE coor SURFACE OF THE GRILL.

TRITIAL TIME 1S THE INSTANT AFTER THE GRILL 1S SwrTTHED oM .
Fisoal Time 15 THE INSTARNT THE GRILL LEACHES 350°C.

TwiTiaL ENERGY 1S INTELVAL . FINAL ENERCY IS JATERAAL.
E.Nm‘f 'I‘R.AHSF-ER. FROM. ELECTRIC HERTING oL To GRILL SUR.FACE.
S0% OF THE THERMAL ENERLY RADIATES 70 THE Loom.,

DESCRIBE the PHYSICS
Diagram and Define Variables
Lwmew Stere Enerey Trawsper Fivar State
| || L
= 1L.B K :
m=2.B Ky } Tp=350°C
_r; = 20 . C- E‘;h
Civon= 40 /ia-C P=1500wW
Target Variable(s)
Quanttative Relationships
Er-Ei = Ei- Eou
Ei = (lgﬂ’m)l El'ln.z bg—glg;-}ric
EF = ("Elrm)F Ebv‘f: ol 5 Ei"’\

'&Eckd-ic
5-36 Pal= =
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PLAN the SOTTION

Construct specific equations Unenown
Fiwp a<t: bt
@) e o p BEechic
bk
E”D bEtltH‘rit_:
@ bEcle&r-‘: = E'm E-;....
Fuwp E;. :
Er-Ei= Eu-Eont E¢ . E;, Eout
Fiap E‘F:
E-F = Bz A\E(KE)."_N A\E(Kﬁ)irm

Finp b\E(KE);,M‘.

@ DE(KE)im = me,, BT
Fivp €, 04 ¢

Ew{r‘-E‘Eih

Check for sufficiency ’
T Vnewowns (B4, Bciectic, Eim, B, €1, €0, ar6(we), )
& Eauations (I,II,EC,H, x, 3?1)

Sivce E.F Avv E| ARE w TwD EQUATIONS HopEFuULLY
ONE wiLL CANZEL pUT,

Outline the Math Solution
SorLve @ FoR E,04 aAND PUT INTD @
Sowve (D) r ME(KE);,,  AD puT w0 @
Sowve @Fo& E¢ avp poT wTo (@)
Sowve @ FoR. E;.. AnP puT o @

Sowve @ For. D, |.dvie anD foT JMTO@
Sowe (D Fez. o,

=i .
Follow the Plan

Sewe (@) E.t:=.5E,,
PUT INW@ E.F'E-; E;“—.SE;

E¢-E;=.5E,
Souve @ DIE(KE),,, =wmC, AT
Por w‘r'b Ef-Bi=mC, OT
Sowve

Efg=wC, OT+E
Por ivTo @
Sewve (IO

mC,, BT+ E; — £;. =.5E;
Por wro ()

mCmdT = .5E.
Sowve @

ZmC, AT = Ein
AEtie:.Jlri:. = 2w Cq'm b-r
Pur mwro @
Sowve @

bECltL‘I"i& = 2w c'|rlu-« &T

2—“" cirn- bT
Fal J

¢
CHECK UNITS -

= [Ka1[¥qec)[oc)
w3

=031 _ [N

% [5]

=P

= [} ok

Calculate Target Variable(s)
2( 2.8 ¥3)(4L0 Yiyoc)(330°%)
(1500 W)

ot = (570 sec) (522 =/ 9.5 min = At—l

Ak = = 570 s

V
Is Answer Properly Statec?
Yes. Tue awsweR 15 o uniTs OF TmmE.

Is Answer Reasonable?

Yes. T woull ExrecT TO WAIT 9.5 prnvres
FoR A GRILL TO waARM UP,

Is Answer Complete?

Yes. We pETERMINED How LoNG IT TAKES For
THE GRILL TD wWAEM ULP.
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Problem #15: An airplane dcicer melts 0.]10-k
consists of resistive heating wires connecied to
their resistance. Assume that the deicer transfer 100 percent of its energy 1o the ice.

EQCUS 1he PROBLEM

£ of ice from the wings of an airplane each minute. The deicer
2 24-V bauery. Calculaic the current through the heating wires and

Picture and Given Information

—

24V

e

O.loK

Question(s) WHAT 15 TWE CURRENT AND RESISTawcE

AP o Use enNertY  ConSERVATION.

Trimias TipE

IS THE NSTANT THE
FivaLr Time

IS5 EXALTLY ONE MINUTE
INITIAL EMNERCLY (S INTERNAL.
ENERLY TRANSFER TD SYSTEA FROM HEATING LIILES.
Ls€ ELECTRICAL TRAMSFER. RELATIONS AND OHM'S LA
AssumeE ALL ElEcTRIcaL ENERGY
TO MELTING THE KE.

DESCRIBE the PHYSICS
Diagram and Define Variables

Toimar Stere

Enerey TRAvsEER

OF efE
) MELT EALH pMinuTE
)
b
3

gi’B

IN THE HEATING wirES 7

Tre SYSTEM 1S A OO K’ﬁ PIECE of IcE.

HEATING WIRES ARE wWARMED up.
AFTER INITIAL TimeE,

FinAL EMERLY [S WTERMAL,

FROM THE HEATER Gors

FivaL Stare

(Sm..m)
m= 0.10 Kq 1
T:= 0°C Ei = 8B lechvic
Le=23x(0° Vi
t, =0
Targe: Variabled®) | Fiup g g T |
Quantitative Relatonships
Er-E = E, - E.+
EL = (IEicc)-F Ein= DE fechic
€ = (16ie); ek O
DIEie= mLyf
V2
D Eelecric _ (&) AV=TR_
5-38
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(L\Gurb)

[

Tps ofer
Eg= | min


PER Office
5 - 38


‘\' -

Construct specific equations Uinto ooy Fo;::-w the P’l::.upT
Fap T T Sowe (TD)  BIEie = miyg
@ av=1Irm R Por wre (@) Ef- £ = mig
Fios R : Sowve @ Egzmly + E
@ DE eetwic - _(_é_\_f_),l 5E¢;¢+.;c Por ivro @ mLr+ € ~-€ = E,
&t R Sowve @ mLe = €,

Fum AE, e bic

Por m‘m

E-‘n-. = AEdwhria i Sowve

mLr= B€eechic
ML,F' = &Gclech-.'g

Fvd Eiu: R wre @ mle _ (av)
E;" 'E; = E;., 'Ew+ ot 1S =
Es-E; = E; Er, € Sewe (D) R = 2t(sv)
Fwp E.c'- YRS
atlov
@ E_p-E-i = ﬁlEi:e &IG‘-:: Pu'r‘ |MT‘D© DV = I(T‘:')
Finp DiE, - | Sewe () avs Tot(ov)?
5 m L
@ DIE;e = mlp £
' AVwlp
bt v - T
mlr _ o
aAtav
CHELKLWWE-;/ _] [ At j"‘
- [xgll-ig 210 A
4 [se3LV) ~ kg3 [¥%cs)
i o.E.
I - LJ/V.SEQJ = EQ_MF-] O.K K = [\2—‘:—“]: waﬂ-} =
Check for sufficiency

Calmﬂaw'l‘arg(e: Varia?]:;(s)) o
_ (.10K8)(3.3x10% 4 _ 3 -
L= (6O ) (24 v) "“k25 V-sec = ﬂ

- ((DGSH)(Z“Y); _ a,
R= CI0R)( anics4ha) = 1.0 55 = E‘"]

T Unewowws (T, R, BEenvic, B, E¢, €, DI, )
G Eguations (T, T T, W7 ,%1)

Two EQuATIONS rowTam Ef awd E.. HoPepuLLy
ONE WILL CANCEL ouT,

Outline the Math Soluton
SoLve @ Fo? DIE,, awp puT wm@

Vv 1
Sevve @ FoR. Eg AnD fuT poTO @ Is Answer Properly Stated?
Sewve @ Fok E;, AnD fuT wo (ID Yes. THE AnNsuERS

ARE IN LOITS DF CURRENT AWD
RESISTAMCE,

Sewe @ For. DE . cdric AND PuT lHT‘D®
Sowve @ FoR R aAwD foT IN’TB®

Is Answer Reasonable?
Sewve @ For. I,

Yes. WE Would EXPECT A SmALL RESISTANCE AND

A LARGE (ULREENT SO THAT THE ENERLY TRANSFER
RATE 153 HIGH AND THE ICE MELTS QUICKLY.

Is Answer Complete?

Yes. We uaveE FoumD THE CURRENT AND
RESISTANCE of THE HEATING wWIRES,

5-39
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3. Practice Exam Problems

Problem #1: You are watching a National
Geographic Special on television. One
segment of the program is about archer fish,
which inhabit streams in southeast Asia. This
fish actually "shoots" water at insects to knock
them into the water so it can eat them. The
commentator states that the archer fish keeps
its mouth at the surface of the stream and
squirts a jet of water from its mouth at 13
feet/second. You watch an archer fish shoot a
juicy moth off a leaf into the water. You
estimate that the leaf was about 2.5 feet above
a stream. You wonder what the minimum
angle from the horizontal that the water can be
ejected from the fish's mouth to hit the moth.
Since you have time during the commercial,
you quickly calculate it.

Problem #2: Your artist friend is designing a
kinetic sculpture and asks for your help since
she knows that you have had physics. Part of
her sculpture consists of a 6.0-kg object (you
can't tell what it is supposed to be but it's art)
and a 4.0-kg object which hang straight down
from opposite ends of a very thin, flexible
wire. This wire passes over a smooth,
cylindrical, horizontal, stainless steel pipe 3.0
meters above the floor. The frictional force
between the rod and the wire is negligible.
The 6.0-kg object is held 2.0 meters above the
floor and the other object hangs 0.50-m above
the floor. When the mechanism releases the
6.0-kg object, both objects accelerate and one
will eventually hit the floor but they don't hit
each other. To determine if the floor will be
damaged, calculate the speed of the object
which hits the floor.

Problem #3: Super Dave has just returned
from the hospital where he spent a week
convalescing from injuries incurred when he
was "shot" out of a cannon to land in an airbag
which was too thin. Undaunted, he decides to
celebrate his return with a new stunt. He
intends to jump off a 100-ft tall tower with an

elastic cord tied to one ankle and the other end
tied to the top of the tower. This cord is very
light but very strong and stretches so that it
can stop him without pulling his leg off. Such
a cord exerts a force with the same
mathematical form as the spring force. He
wants it to be 75 feet long so that he will be in
free fall for 75 feet before the cord begins to
stretch. To minimize the force that the cord
exerts on his leg, he wants it to stretch as far
as possible. You have been assigned to
purchase the cord for the stunt and must
determine the elastic force constant which
characterizes the cord that you should order.
Before the calculation, you carefully measure
Dave's height to be 6.0-ft and his weight to be
170-Ibs. For maximum dramatic effect, his
jump will be off a diving board at the top of
the tower and, from tests you have made, you
determine that his maximum speed coming off
the diving board is 10-ft/sec. Neglect air
resistance in your calculation. Let Dave
worry about that.

Problem #4: In a weak moment you have
volunteered to be a human cannonball at an
amateur charity circus. The "cannon" is
actually a 3.0-ft diameter tube with a big stiff
spring inside which is attached to the bottom
of the tube. A small seat is attached to the free
end of the spring. The ringmaster, one of your
soon to be ex-friends, gives you your
instructions. He tells you that just before you
enter the mouth of the cannon, a motor will
compress the spring to 1/10 its normal length
and hold it in that position. You are to
gracefully crawl in the tube and sit calmly in
the seat without holding on to anything. The
cannon will then be raised to an angle such
that your speed through the air at your highest
point is 10-ft/sec. =~ When the spring is
released, neither the spring nor the chair will
touch the sides of the 12-ft long tube. After
the drum roll, the spring is released and you
go flying through the air with the appropriate
sound effects and smoke. With the perfect aim


PER Office
5 - 40


of your gun crew you will fly through the air
over a 15-ft wall and land safely in the net.
You are just a bit worried and decide to
calculate how high above your starting
position you will be at your highest point.
Before the rehearsal, the cannon is taken apart
for maintenance. You see the spring which is
now removed from the cannon and hanging
straight down with one end attached to the
ceiling. You determine that it is 10-ft. long.
When you hang on its free end without
touching the ground, it stretches by 2.0-ft. Is
it possible for you to make it over the wall?

Problem #5: As a concerned citizen, you
have volunteered to serve on a committee
investigating injuries to Junior High School
students participating in sports programs.
Currently your committee is investigating the
high incidence of ankle injuries on the
basketball team. You are watching the team
practice looking for activities which can result
in large horizontal forces on the ankle.
Observing the team practice jump shots gives
you an idea so you try a small calculation. A
40-kg student jumps 1.0-m straight up and
shoots the 0.80-kg basketball at his highest
point. From the trajectory of the basketball,
you deduce that the ball left his hand at 30°
from the horizontal at 20-m/s. What is his
horizontal velocity when he hits the ground?

Problem #6: You are a volunteer at the
Campus Museum of Natural History. Because
of your interest in the environment and your
physics experience, you have been asked to
assist in the production of an animated film
about the survival of hawks in the wilderness.
In the script, a 1.5-kg hawk is hovering in the
air so it is stationary with respect to the
ground when it sees a goose flying below it.
The hawk dives straight down. When it
strikes the goose and digs its claws into the
goose's body, it has a speed of 60-km/hr. The
goose, which has a mass of 2.5-kg, was flying
north at 30-km/hr just before it was struck by

the hawk and killed instantly. The animators
want to know the velocity (magnitude and
direction) of the hawk and dead goose just
after the strike.

Problem #7: You have been hired to check
the technical correctness of an upcoming
made-for-TV murder mystery. The mystery
takes place in the space shuttle. In one scene,
an astronaut's safety line is sabotaged while
she is on a space walk, so she is no longer
connected to the space shuttle. She checks and
finds that her thruster pack has been damaged
so it no longer works. She is 200 meters from
the shuttle and moving with it. That is, she is
not moving with respect to the shuttle. But
she is drifting in space with only 4 minutes of
air remaining. To get back to the shuttle, she
decides to unstrap her 10-kg tool kit and throw
it away with all her strength, so that it has a
speed of 8-m/s. In the script, she survives, but
is this correct? Her mass, including her space
suit, is 80-kg.

Problem #8: Because of your concern that
incorrect science is being taught to children
when they watch cartoons on TV, you have
joined a committee which is reviewing a new
cartoon version of Tarzan. In this episode,
Tarzan is on the ground in front of a herd of
stampeding elephants. Jane, who is up in a
tall tree, sees him just in time. She grabs a
convenient vine and swings towards Tarzan,
who has twice her mass, to save him. Luckily,
the lowest point of her swing is just where
Tarzan is standing. When she reaches him, he
grabs her and the vine. They both continue to
swing to safety over the elephants up to a
height which looks to be about 1/2 that of
Jane's original position. To decide if you are
going to approve this cartoon, calculate the
maximum height Tarzan and Jane can swing
as a fraction of her initial height.
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Problem #9: Your friend has just been in a
traffic accident and is trying to negotiate with
the insurance company of the other driver to
pay for fixing her car. She believes that the
other car was speeding and therefore the
accident was the other driver's fault. She
knows that you have a knowledge of physics
and hopes that you can prove her conjecture.
She takes you out to the scene of the crash and
describes what happened. She was traveling
North when she entered the fateful
intersection. There was no stop sign so she
looked in both directions and did not see
another car approaching. It was a bright,
sunny, clear day. When she reached the center
of the intersection, her car was struck by the
other car which was traveling East. The two
cars remained joined together after the
collision and skidded to a stop. The speed
limit on both roads entering the intersection is
50-mph. From the skid marks still visible on
the street, you determine that after the
collision the cars skidded 56 feet at an angle
of 30° north of east before stopping. She has a
copy of the police report which gives the
make and year of each car. At the library you
determine that the weight of her car was 2600-
Ibs and that of the other car was 2200-Ibs
where you included the driver's weight in each
case. The coefficient of kinetic friction for a
rubber tire skidding on dry pavement is 0.80.
It is not enough to prove that the other driver
was speeding to convince the insurance
company. She must also show that she was
under the speed limit.

Problem #10: You have been able to get a
part time job with a medical physics group
investigating ways to treat inoperable brain
cancer. One form of cancer therapy being
studied uses slow neutrons to knock a particle
(either a neutron or a proton) out of the
nucleus of the atoms which make up cancer
cells. The neutron knocks out the particle it
collides with in an inelastic collision. The
heavy nucleus essentially does not move in
the collision. After a single proton or neutron
is knocked out of the nucleus, the nucleus
decays killing the cancer cell. To test this
idea, your research group decides to measure
the change of internal energy of a nitrogen
nucleus after a neutron collides with one of
the neutrons in its nucleus and knocks it out.
In the experiment, one neutron goes into the
nucleus with a speed of 2.0 x 107-m/s and you
detect two neutrons coming out at angles of
30° and 15°. You can now calculate the
change of internal energy of the nucleus.
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