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Friedmann-Robertson-Walker metric

ds2 = dt2 � R2(t)

✓
dr2

1 � kr2
+ r2(d✓2 + sin2 ✓d�2)

◆

R(t) is the scale factor
k is curvature constant : 

k = -1, 0, +1 for spatially open, flat or closed Universes

with perfect-fluid source

T µ⌫ = �pgµ⌫ + (⇢ + p)uµu⌫

and solve Einstein’s equations

Rµ⌫ �
1

2
gµ⌫R � ⇤gµ⌫ = 8⇡GNTµ⌫
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The (00) component gives:

H2 ⌘
Ṙ2

R2
=

8⇡GN⇢

3
�

k

R2
+

⇤

3

The (ii) components give:

R̈

R
=

⇤

3
�

4⇡GN(⇢ + 3p)

3

In addition Tμν;ν = 0 gives:
⇢̇ = �3H(⇢ + p)
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Consider k = Λ = 0

Ṙ2

R2
=

8⇡GN⇢

3
⇢̇ = �3H(⇢ + p)

i) Radiation dominated Universe: p = ρ/3

ρ ~ R-4 and R ~ t1/2 

ii) Matter dominated Universe: p = 0

ρ ~ R-3 and R ~ t2/3 
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Inflation- Cosmological Problems

Flatness Problem

(Λ = 0)
k

R2
= H2(⌦ � 1)

Divide by T2 and evaluate today:

k̂ =
k

R2
0T

2
0

= H2
0(⌦0 � 1)/T 2

0 < 2 x 10-58

Represents an initial condition on the Universe
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Inflation

• Standard cosmology assumes an adiabatically 
expanding Universe, R ~ 1/T

• Phase transitions can violate this condition
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Phase Transitions

• Expect several phase transitions in the Early Universe
- GUTS: SU5 → SU(3) x SU(2) x U(1)
- SM: SU(2) x U(1) → U(1)
- possibly other non-gauged symmetry breakings

• Entropy production common result

• Type of inflation will depend on the order of the phase transition
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New Inflation
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Inflation

Λ  = 8 π GN V0 
For ρ << V0, 

H2 =
Ṙ2

R2
⇡

8⇡GNV0

3
=

⇤

3

Ṙ

R
⇡

r
⇤

3
; R ⇠ eHtor

When the transition is over, the 
Universe reheats to T < V01/4  ~ Ti, 
but R >> Ri

For Hτ > 65, curvature problem solved
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• In the Solar System?
• In the Galaxy?

– in cosmic rays antimatter is secondary
– antiHelium - never observed

Anti-matter in the Universe

• On Earth?  
• On the Moon?

H̄e = p̄p̄n̄n̄

• Anywhere?
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Baryogenesis
The Baryon asymmetry

• Goal:  To calculate η from microphysics

• Problem: In baryon symmetric universe the baryon density is 
determined by freeze-out of annihilations

nB

n�

=
nB̄

n�

For T >> mN, nB

n�

⇠ O(1)

For T < mN,
nB

n�

⇠ (
mN

T
)3/2e�mN/T
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The Sakharov Conditions

To generate an asymmetry:

1.Baryon Number Violating Interactions

2.C and CP Violation

3.Departure from Thermal equilibrium

1. and 2. are contained in GUTs 
3. is obtained in an expanding Universe
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Grand Unified Theories

X

e _

d

X

u

u

_

_

In SU(5), there are gauge (and Higgs) bosons which mediate baryon 
number violation.  Eg.,

ΔB = + 1/3 ΔB = - 2/3
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BBN Theory

Conditions in the Early Universe:

T >
∼ 1 MeV

ρ = π2

30(2 + 7
2 + 7

4Nν)T 4

η = nB/nγ ∼ 10−10

β-Equilibrium maintained by
weak interactions

Freeze-out at ∼ 1 MeV determined by the
competition of expansion rate H ∼ T 2/Mp and
the weak interaction rate Γ ∼ G2

FT 5

n + e+
↔ p + ν̄e

n + νe ↔ p + e−

n ↔ p + e− + ν̄e

At freezeout n/p fixed modulo free
neutron decay, (n/p) $ 1/6 → 1/7
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Nucleosynthesis Delayed
(Deuterium Bottleneck)

p + n →D+γ Γp ∼ nBσ

p + n ←D+γ Γd ∼ nγσe−EB/T

Nucleosynthesis begins when Γp ∼ Γd

nγ

nB
e−EB/T ∼ 1 @ T ∼ 0.1 MeV

All neutrons → 4He

with mass fraction

Yp =
2(n/p)

1 + (n/p)
% 25%

Remainder:

D, 3He ∼ 10−5 and 7Li ∼ 10−10 by number
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Historical PerspectiveHistorical Perspective

Intimate connection with CMB

Conditions for BBN:
Require T > 100 keV ⇒ t < 200 s
σv(p + n →D + γ) ≈ 5 × 10−20 cm3/s

⇒ nB ~ 1/σvt ~ 1017 cm-3

Today:
nBo ~ 10-7 cm-3

and
nB ~ R-3 ~ T3

Predicts the CMB temperature
To = (nBo / nB )1/3 TBBN ~10 K

Alpher
Herman
Gamow
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Some History:

Penzias and Wilson:
 Perfecting a radio antenna to track the Echo satellite

 found background noise which could not be eliminated.

Corresponding temperature:

T = 3.5± 1 K

Published in
“A Measurement of Excess Antenna Temperature at 4080 Mc/s”

Followed by an explanation by Dicke, Peebles Roll, & Wilkenson
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Subsequently, many measurements ( ground and balloon based) 
showed that:

T = 2.7 - 3 K
Enter COBE. 

	
 Lingering doubts regarding distortions and aniotropies set 
aside.

T = 2.73 ± 0.01 K

nγ ~ T3 = 411 cm-3

ργ ~ T4 ≤ 10-4 ρc
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WMAP

Position of 1st peak   
⇒    Ω = 1
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Cosmological Parameters:
Ω = 1.006 ± 0.006
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Galactic Rotation Curves

Doppler measurements in spiral galaxies

Observe: v(r)

1
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Expect:
GM2

r2 = KMv2

r

or M(< r) = Kv2r
G

if M is constant v2
∼ 1/r

if v is constant M ∼ r

⇒ Existence of Dark Matter

2

NGC 2403
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Expect:
GM2

r2 = KMv2

r

or M(< r) = Kv2r
G

if M is constant v2
∼ 1/r

if v is constant M ∼ r

⇒ Existence of Dark Matter

2

NGC 3198
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Abell 781 Wittman et al.
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The Bullet Cluster
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WMAP 7	
 	
 	
 	
 	
 Komatsu etal
	
 Precise bounds on matter content

                         	
 	
 	
       
Ωmh2 = 0.1334 ± 0.0056      Ωbh2 = 0.0226 ± 0.0006

                              

     Ωcdmh2 = 0.1109 ± 0.0056
or

Ωcdm h2 = 0.0997 - 0.1221  (2 σ)

How Much Dark Matter
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•     Baryons
– Cluster, produce heavy elements, …ΩBh2 = 0.0224

• Neutrinos
– We know too much (0.0005 < Ωνh

2 < 0.0076)

• Axions
– Solve the strong CP problem, scale is not well motivated

• LSP
– Natural stable dark matter candidate with good relic density

• …

Candidates
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Gauge Hierarchy Problem

MP  ≈ 1019   GeV

MX  ≈ 1015  GeV

MW  ≈ 102   GeV

Why are these scales different?
Do they stay different?
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What is Supersymmetry

Extension of Lorentz group
Q ∼

√
P ; {Q,Q} ∝ P

with [H,Q] = 0

Q|Boson〉 = |Fermion〉
Q|Fermion〉 = |Boson〉

Chiral multiplet





ẽ

e









scalar − spin 0

fermion − spin 1/2





Vector multiplet





γ̃

γ









fermion − spin 1/2

vector − spin 1





(also gravitational multiplet with

gravitino (spin 3/2) and graviton (spin 2).

1

What is Supersymmetry

Extension of Lorentz group
Q ∼

√
P ; {Q,Q} ∝ P

with [H,Q] = 0

Q|Boson〉 = |Fermion〉
Q|Fermion〉 = |Boson〉

Chiral multiplet





ẽ
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What is 
supersymmetry?
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Running of the Gauge couplings
in the standard model

Running of the Gauge couplings
in the supersymmetric 

standard model
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What is the MSSM

1) Add minimal number of new particles:  
Partners for all SM particles + 1 extra Higgs 

EW doublet.

2) Add minimal number of new interactions: 
Impose R-parity to eliminate many 

UNWANTED interactions.

R = (-1)3B+L+2S
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Particle Content of the MSSM
Gauge

γ Β

Ζ or  W3

W±  Wi

⇒
Β

W3

W±

neutralinos

charginos

Higgs
Η1

Η2

⇒ neutralinos
charginos

Η1,2

Η±

Matter
q
l

⇒
squarks
sleptons

qL,R

lL,R

~

~

~

~

~

~

~
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All New particles have R = -1
E.g.:

γ: S=1/2;  B=L=0;  R=(-1)1 = -1

e: S=0;  B=0; L= -1;  R=(-1)-1 = -1

u: S=0;  B=1/3; L=0;  R=(-1)1 = -1
R-Parity Conservation ⇒
The Lightest Supersymmetric Particle (LSP) is stable
     e                          γ

                                 e

~~
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MSSM and R-Parity 
Stable DM candidate

1) Neutralinos

2) Sneutrino
         Excluded (unless add L-violating terms)

3) Other:
        Axinos, Gravitinos, etc

�i = ↵i
eB + �i

fW + �i
fH1 + �i

fH2

SUSY Dark MatterSUSY Dark Matter
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The Search:
• Colliders:

– Supersymmetry
– Missing energy
– Rare Processes

• Direct Detection
• Indirect Detection
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Δχ2 map of m0 - m1/2 plane

CMSSM
Buchmueller, Cavanaugh, De Roeck, Ellis, Flacher, Heinemeyer, 
Isidori, Olive, Ronga, Weiglein
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Effect of Results from LHC

jets + missing ET with/
without leptons

Heavy Higgs to ττ

B to μμ

~5fb-1 @ 7 TeV
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Most recent result from Xenon100

Aprile
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DAMA &
CoGeNT

CDMS Low 

Mass Limit

Red is CDMS Blue is Xenon Green is Edelweiss

P. Cushman
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Higgs masses vs elastic cross sections
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Figure 8: Left panel: mh as calculated using FeynHiggs (showing the bands mh = 119 ±
1.5 GeV and 125 ± 1.5 GeV) and right panel: spin-independent elastic χ − p scattering
cross section (showing the XENON100 exclusion [30] as in Fig. 7), along WMAP strips for
tan β = 40 - the τ̃1 − χ coannihilation strips for A0 = 0 (5) (black) and A0/m0 = 2.5 (red)
(6). The lower bounds on m1/2 along these strips due to b → sγ are indicated by green
brackets { .

very similar. In this case, we see that a range of m1/2 is compatible with gµ − 2 as well

as the LHC missing-energy searches and mh = 119 GeV. The red line is for the τ̃1 − χ

coannihilation strip with A0/m0 = 2.0 (8), as we do not find generic consistent solutions for

tan β = 55 and A0/m0 = 2.5. As in Fig. 7, the blue line is for the focus-point strip with

A0 = 0 (9). We see that mh = 119 GeV is compatible with the A0 = 0 coannihilation strip

for m1/2 > 600 GeV, and with the A0 = 0 focus-point strip for m1/2 > 400 GeV. However,

only the τ̃1 − χ coannihilation strip with A0/m0 = 2.0 is compatible with mh = 125 GeV,

and this for all values of m1/2.

The right panel of Fig. 9 displays the corresponding elastic scattering cross section along

the same strips. As in Fig. 7, the focus-point strip yields the highest cross section, and as

there and in Fig. 8, the cross section for A0 = 0 is larger than that for A0/m0 > 0. This time,

the cross section for A0/m0 = 2.0 is smaller than that for A0 = 0 by more than an order of

magnitude, and is again always < 10−9 pb, even for the optimistic value ΣπN = 64 MeV.

Along the focus-point strip, on the other hand, the cross section could be as large as the

XENON100 upper limit.

17
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Higgs masses vs elastic cross sections
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Figure 9: Left panel: mh as calculated using FeynHiggs (showing the bands mh = 119 ±
1.5 GeV and 125 ± 1.5 GeV) and right panel: spin-independent elastic χ − p scattering
cross section (showing the XENON100 exclusion [30] as in Fig. 7), along WMAP strips for
tan β = 55 - the τ̃1 − χ coannihilation strips for A0 = 0 (7) (black) and A0/m0 = 2.0 (8)
(red), and the focus-point strip for A0 = 0 (9) (green).

6 Summary

We have discussed in this paper the interplay between a hypothetical measurement of the

mass of the Higgs boson and spin-independent elastic dark matter scattering, in the context

of WMAP strips in the (m1/2, m0) planes of the CMSSM. In the past, it has been common

to discuss planes with A0 = 0 and various values of tan β ∈ [10, 55]. However, previous

studies [24, 27, 29] have shown that A0 > 0 may be preferred, so we have explored this

possibility in this paper. Among the examples we consider is a t̃1 − χ coannihilation strip, a

possibility that does not arise if A0 = 0, and which has not been extensively studied in the

dark matter detection literature.

Positive values of A0 generally yield larger values of mh than for A0 = 0, which may be

preferred in light of the LHC ‘hint’ that mh ∼ 125 GeV, though mh ∼ 119 GeV may still

be a possibility. As could be anticipated from previous studies, only limited portions of the

WMAP strips are compatible with mh ∼ 125 GeV, whereas larger portions are compatible

with mh ∼ 119 GeV. In addition to τ̃1 −χ coannihilation strips with tanβ ∼ 40 or more and

A0 ∼ 2m0 or more, which are reflected in Figs. 2 and 3 of [27], we also find that some portion

of the τ̃1 −χ coannihilation strip for tanβ = 10 may also be compatible with mh ∼ 125 GeV

within the FeynHiggs uncertainty of ±1.5 GeV if A0 is very large, e.g., A0 = 3000 GeV,
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