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Searching for new physics with muons 
•  Mu2e searches for charged-lepton flavor violation 

(CLFV) with muons in the presence of a nucleus: 

•  Why muons? 

1.  Easy to produce: 
2.  Large production energies are not required 
3.  Muons are clean — i.e. no hadronic final states 
4.  Muons are relatively long-lived ( τ = 2.2 µs ) 

!  Their trajectories can be harnessed 
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p + target ! ⇡� ! µ�

µ� + Al ! e� + Al



Comparing Mu2e to other indirect searches 
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Comparing Mu2e to other indirect searches 
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W. Altmannshofer, et al,  arXiv:0909.1333 [hep-ph]  

Sizable effects 
expected for wide  
range of models.  



Charged lepton flavor violation  
•  In principle, CLFV is not forbidden by massive-ν SM due to 

neutrino oscillations 

•  In practice, we will never see the SM process! 
▫  Transition rate < 10-50 

•  Various NP models allow for it, at levels just beyond current 
CLFV upper limits. 
▫  SO(10) SUSY 

!  L. Calibbi et al., Phys. Rev. D 74, 116002 (2006); L. Calibbi et al., JHEP 1211, 40 (2012). 

▫  Scalar leptoquarks 
!  J.M. Arnold et al., Phys. Rev D 88, 035009 (2013). 

▫  Left-right symmetric model 
!  C.-H. Lee et al., Phys. ReV D 88, 093010 (2013). 
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History of CLFV limits with muons 
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What is Mu2e measuring? 
•  Measure ratio of               conversions (CLFV) to 

the number of µ captures. 

▫  Single-event-sensitivity (SES):  2.5 × 10-17        ( 104 ) 

▫  Upper limit (90% C.L.):   ~ 8 × 10-17        ( 104 ) 

▫  Discovery sensitivity:   ~ 1 × 10-16         ( 104 ) 

▫  Probe NP mass scales of:  103 – 104 TeV  ( 10 ) 
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Rµe =
�[µ� +A(Z,N) ! e� +A(Z,N)]
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What is Mu2e measuring? 
•  Measure ratio of               conversions (CLFV) to 

the number of µ captures. 

▫  Single-event-sensitivity (SES):  2.5 × 10-17        ( 104 ) 

▫  Upper limit (90% C.L.):      7 × 10-17        ( 104 ) 

▫  Discovery sensitivity:      3 × 10-16         ( 104 ) 

▫  Probe NP eff. mass scales of:  103 – 104 TeV  ( 10 ) 
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Mu2e goals: Improvement 
wrt. previous 
experiment 

Rµe =
�[µ� +A(Z,N) ! e� +A(Z,N)]

�[µ� +A(Z,N) ! �µ +A(Z � 1, N + 1)]

(NP) 

(SM) 

µ ! e



Muonic Atoms – a primer 
• Bound muon cascades quickly to the 1s ground 

state (emits X-rays) 
• Bohr radius of ground state: 
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Muonic Atoms 
• Nuclear capture (61% of bound muons on Al) 
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Muonic Atoms 
• Decay-in-orbit (39% of bound muons on Al) 

Knoepfel - FPCP 2014 

µ- 

e- 

νe 

νµ 

µ� +N ! e��e�µ +N

27
13Al 27

13Al

14 

Rest of talk: DIO 



Muonic Atoms 
• Muon to electron conversion 
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Muonic Atoms 
• Muon to electron conversion 
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Muonic Atoms 
• Muon to electron conversion 
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e- 

27
13Al

Experimental signature is a  
mono-energetic electron of energy 

µ� +N ! e� +N

Eµe = mµc
2 � Eb � E

recoil

= 104.973 MeV (for Al)

We know exactly 
where to look. 



It’s not that simple 
• DIOs are a complication 
•  The energy distribution of electrons from muon 

decay is given by a (modified) Michel spectrum:  
▫  Michel spectrum endpoint: 52.8 MeV 
▫  Presence of atomic nucleus ! momentum transfer 
▫  DIO electron energies up to signal energy Eµe .  
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Fermilab in the muon era 
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Fermilab in the muon era 
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Wilson Hall 

Debuncher 
Mu2e 

Muon g-2 
Ops. in 2017 

The Muon Campus 
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How do we get the muons? 
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Muons produced from protons, prepared using 
existing accelerator infrastructure. 



How do we get the muons? 
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Muons produced from protons, prepared using 
existing accelerator infrastructure. 

Single event sensitivity goal: 2.5 × 10-17 

We need at least 1018 Al-bound muons. 

For a three-year run, we will need 1010 stopped muons/sec. 



Mu2e Apparatus 
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Mu2e Apparatus 
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Particles produced 
from tungsten target 
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Mu2e Apparatus 
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8-GeV protons 

Particles produced 
from tungsten target 

S-shaped solenoid: 
•  central collimator selects negative particles 
•  transports particles to detector area, and  
•  allows remaining pions to decay to muons 
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Mu2e Apparatus 
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Muons stop on Al target, 
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Mu2e Apparatus 
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Particles produced 
from tungsten target 

Muons stop on Al target, 
which emits an electron 
isotropically 
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Tracker/calorimeter detect 
electron signature 

I. I. Rabi 

8-GeV protons 

S-shaped solenoid: 
•  central collimator selects negative particles 
•  transports particles to detector area, and  
•  allows remaining pions to decay to muons 



Magnetic fields are important 
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•  To collect as many particles as possible, we use 
magnetic mirrors, produced by graded magnetic 
fields in much of the apparatus 

4.6 T 2.5 T 2.0 T 1.0 T 

31 
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A pulsed beam 
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A pulsed beam 



Knoepfel - FPCP 2014 

 Time (ns)
0 200 400 600 800 1000 1200 1400 1600 18000

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

POT pulse

 400 )× arrival time ( -µ

 400 )× decay/capture time ( -µ

(8 GeV) 

34 

A pulsed beam 

What if a pion doesn’t decay but survives and stops in the Al target? 
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•  Pion capture can produce a significant background: 

•  Can produce electron at same energy as the signal electron! 
•  Trick: Muon decays from Al are slow;  pion captures are fast. 

Wait out the pion captures before starting the live gate. 

Backgrounds from pion capture 

⇥� +N ! �e+e� +N 0
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Backgrounds from pion capture 
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•  It’s not just more statistics. 
•  The pulse separation of previous experiment: 20 ns. 
•  The 1695 ns proton pulse separation allows various 

backgrounds to significantly dissipate before we start 
the livegate. 

Signal window 
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The factor of 104 improvement in R … 
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Tracker 
Calorimeter 
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Designing the tracker and calorimeter 



Designing the tracker and calorimeter 
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Eµe 

• Remember the DIOs. 
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Designing the tracker and calorimeter 



Knoepfel - FPCP 2014 41 

Eµe 

 Don’t want 
 these! 

We 
need 
these. 

• Remember the DIOs. 
Designing the tracker and calorimeter 



Knoepfel - FPCP 2014 42 

Eµe 

 Don’t want 
 these! 

We 
need 
these. 

• Remember the DIOs. 

End view of stopping target 
and detectors 

•  Since radius of track 
is proportional to pT, 
design the detectors 
to only see tracks with 
large enough radii. 
▫  Annular design 

Designing the tracker and calorimeter 
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Eµe 

 Don’t want 
 these! 

We 
need 
these. 

• Remember the DIOs. 

High-pT  
electron 

Low-pT  
electron 

Designing the tracker and calorimeter 

•  Since radius of track 
is proportional to pT, 
design the detectors 
to only see tracks with 
large enough radii. 
▫  Annular design 



The tracker 
•  Uses 5-mm diameter straws 
▫  15-micron metalized mylar walls 
▫  25-micron diameter W central wire 
▫  Gas mixture of 80:20 Ar CO2  
▫  Straws are grouped into panels, 6 of which form a plane 
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The tracker 
Knoepfel - FPCP 2014 45 

•  There are a total of 23K straws in 20 stations. 
•  Module rotations are optimized to ensure maximum 

coverage. 

3.3 m 



What about resolution? 
•  Energy loss effects result in an overall momentum 

resolution of ~1 MeV/c. 
•  If there is a large contribution to the high-side tail of 

the resolution function, the DIOs can obscure the 
signal. 
▫  Detailed simulation indicates this is under control. 
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MC truth, 
before smearing, 
energy loss 

Reconstructed  
tracks 

Decay in orbit" Decay in orbit"



The Calorimeter 
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•  Disks are comprised of scintillating crystals. 
•  Need to be fast and radiation hard 
▫  Use BaF2, which has a very fast scintillation 

component (< 1 ns).  
•  Crystal geometry is hexagonal, which works well 

with the annular design 



The Calorimeter 
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•  Uses a two-disk arrangement, spaced ½ wavelength 
apart for (an average) 105 MeV/c particle. 

•  Calorimeter provides 
▫  Track reconstruction validation 
▫  Timing information for background reduction 
▫  Electron/muon discrimination from cosmic rays… 



Cosmic ray backgrounds 
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Incoming cosmic-ray muon 

Interacts with Al target, 
emits electron that 
mimics signal 

•  This happens once per day! 
▫  Need cosmic-ray veto (CRV) system. 



Cosmic ray veto 
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•  Surrounds detector area 
and parts of transport area 

•  Uses extruded plastic 
scintillator with wavelength 
shifting fibers. 

•  Modules grouped into four 
layers, separated by 
aluminum absorbers 

•  99.99% veto efficiency 
required! 

•  Cosmic ray backgrounds 
vetoed by rejecting 3-layer 
coincident signals 

•  Significant shielding 
required to protect against 
neutron/photon radiation 
from production target, 
stopping target, etc.  



Total backgrounds (for 3 yrs) 
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Translates to 90% CL upper limit on R of 7 × 10-17.    

Category Source Events

Intrinsic µ decay in orbit 0.20 ± 0.06
Late-arriving Radiative � capture 0.04 ± 0.02

Beam electrons 0.001 ± 0.001
µ decay in flight 0.010 ± 0.005
� decay in flight 0.003 ± 0.002

Miscellaneous Antiproton capture 0.10 ± 0.06
Cosmic ray 0.050 ± 0.013

Total Background 0.4 ± 0.1



The full simulation 
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Stopped muons: 5.8 × 1017 

Assumed Rµe = 10-16 

Nµe      = 3.94 ± 0.03 
NDIO   = 0.19 ± 0.01 
Nother  = 0.19 

SES = (2.5 ± 0.1) × 10-17 
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Mu2e Collaboration 
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Over 150 collaborators from 28 institutions 



Mu2e Status 
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•  The experiment was strongly endorsed by P5: 
▫  “Recommendation 22: Complete the Mu2e and 

muon g-2 projects.” 
Building for Discovery: Strategic Plan for  

U.S. Particle Physics in the Global Context, p. 15 (May 2014) 

• We are working very hard to finalize the technical 
design report now. 
▫  Will be released in the next few months 
▫  We break ground this fall. 

• Experiment expected to come online by 2019. 



Conclusions 
• Mu2e searches for coherent conversion of a 

muon to an electron (CLFV)  
▫  An improvement of 104 in conversion rate is 

expected wrt the previous experiment 
▫  Improvement of 10 in CLFV mass scale 

• Experimental design is well along  
• Mu2e has been strongly supported by P5 
• Operations will begin at end of this decade 
              …not that far away. 
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We welcome more collaborators!  Join us! 
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Thank you! 

http://mu2e.fnal.gov/ 
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Other backgrounds: 
•  In-flight decays, late arriving 
▫  Muons: 
▫  Pions: 

• Beam electrons, late arriving 
▫  Electrons that propagate through TS to tracker 

• Antiprotons 
▫  Available kinetic energy is above pp threshold 
▫  Partially mitigated by placement of p absorbers in 

transport area  
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µ� ! e�

�� ! µ� ! e�



The stopping target 

•  Chosen geometry: 
▫  17 Al foils 

!  0.2 mm thick each 
!  Spaced 5 cm apart  
!  Radii 6-8 cm 

▫  Supported by thin, 
tungsten wires  
!  lower DIO energy endpoint 

•  20 out of every 104 POTs 
results in a stopped muon. 

•  Electrons emitted 

Knoepfel - FPCP 2014 

•  Maximize muon stopping rate; but minimize energy 
loss for electrons 

62 

isotropically, then travel to the detectors. 



•  Since pion capture process happens very quickly, need a 
target where the muon decay/capture happens slowly, so 
we can collect as many muon decays as possible 

•  Aluminum is best option 

Why aluminum? 
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Signal window 

Al Ti Au 

Stopped muons that decay 39% 15% 3% 
Stopped muon decays in sig. window 50% 30% 1% 
Time constant for muon decay 864 ns 329 ns 75 ns 



• Allowed by various new physics scenarios 
• CLFV parameterized by model-independent 

Lagrangian: 
▫  Assume NP appears in dimension-5/6 operators 

Charged lepton flavor violation  
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Dipole term 

Contact term 
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A. de Gouvea and P. Vogl, Prog. In Particle and Nuclear Physics 71 (2013) 75 



Charged lepton flavor violation  
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Effective mass scale of CLFV 
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• Allowed by various new physics scenarios 
• CLFV parameterized by model-independent 

Lagrangian: 
▫  Assume NP appears in dimension-5/6 operators 

A. de Gouvea and P. Vogl, Prog. In Particle and Nuclear Physics 71 (2013) 75 



Charged lepton flavor violation  
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µ ! e rate  / ⇤�4
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• Allowed by various new physics scenarios 
• CLFV parameterized by model-independent 

Lagrangian: 
▫  Assume NP appears in dimension-5/6 operators 

A. de Gouvea and P. Vogl, Prog. In Particle and Nuclear Physics 71 (2013) 75 

Effective mass scale of CLFV 



Charged lepton flavor violation  
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NP parameter regulating “sharing” between operators 
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• Allowed by various new physics scenarios 
• CLFV parameterized by model-independent 

Lagrangian: 
▫  Assume NP appears in dimension-5/6 operators 

A. de Gouvea and P. Vogl, Prog. In Particle and Nuclear Physics 71 (2013) 75 



Role of κ 

• Consider 
• Process requires no 

quarks, so only dipole 
operator is relevant  
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What if κ is very large?  Not much sensitivity. 
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• Consider 
• Sensitive to both kinds of operators.  

Role of κ 

Knoepfel - FPCP 2014 69 

& 
µ e�̃0

q q�

µ̃ ẽ
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Mu2e is sensitive to all values of κ.  
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Timing is everything… 

•  Significant background is from pion capture 

•  Can produce electron at same energy as the signal electron! 
•  Trick: Muon decays from Al. are slow;  RPCs are fast. 

Wait out the pion captures before starting the live gate. 

⇥� +N ! �e+e� +N 0

Signal window 
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What happens if an out-of-time  
proton enters the signal window? 

Backgrounds from pion capture 



Out-of-time protons 
• Can create RPC backgrounds we cannot reject. 
• Need to make sure this doesn’t happen! 
• Need proton-beam extinction at the level of 10-10. 
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Out-of-time protons 
• Can create pion backgrounds we cannot reject. 
• Need to make sure this doesn’t happen! 
• Need proton-beam extinction at the level of 10-10. 
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Why aluminum? 
•  Since pion capture process happens very quickly, 

need a target where the muon decay/capture 
happens slowly, so we can collect as many muon 
decays as possible 
▫  Aluminum is a good option. 
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A more realistic view of the detector area 
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A more realistic view of the detector area 

Knoepfel - FPCP 2014 75 

•  Muon beam stop absorbs downstream backgrounds 
▫  Made of polyethylene to reduce neutrons 
▫  Hollow to reduce albedo from downstream end, and to 

allow X-ray measurement from atomic transitions of 
stopped muons  
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•  Neutron and proton absorbers 
▫  Absorb nucleon backgrounds that unnecessarily 

increase hit rates/aging in tracker and calorimeters  
▫  Made of polyethylene-based materials 
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For CSS2013 (aka Snowmass) 
•  We performed a detailed study about the feasibility 

of a next-generation Mu2e experiment, under the 
following guidelines: 
▫  Only modest changes to the baseline design would 

be implemented. 
▫  Goal would be a x10 improvement in R measurement 

•  Rationale: 
▫  If Mu2e discovers CLFV, switch target materials to 

gain model discrimination (see next page) 
▫  If Mu2e sees evidence of CLFV, increasing statistics 

x10 can resolve situation 
▫  If Mu2e does not see evidence, place more stringent 

constraints on CLFV 
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•  R is Z-dependent, 
and depends on 
the dominant 
operator in the 
Lagrangian 

•  Measuring R for 
different-Z targets 
gives some 
discrimination in 
pinning down the 
model 
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Why use different targets? 
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Why use different targets? 

For more details, see: 
arXiv:1307.1168 [physics.ins-det] 

Cirigliano, et al,  Phys. Rev. D 80, 013002 (2009) 


