The Mu2e Experiment

Andrew Vold

University of Minnesota

April 11, 2015

Outline Introduction to CLFV Measuring Mu2e Achieving Mu2e Sensitivity

- 2 Measuring Mu2e
- 3 Achieving Mu2e Sensitivity
- Experimental Apparatus
- 5 Leak Testing at the U of M

Introduction to CLFV

- Charged Lepton Flavor Violation (CLFV) is when the total lepton flavor is not conserved in an interaction
- Standard Model process is $\mu^-
 ightarrow e^- + \bar{
 u_e} +
 u_\mu$
- $\bullet\,$ Transition rate $<10^{-50},$ so observation indicates physics beyond the Standard Model
- Sensitivity of experiment gives best chance to see this phenomenon

Measuring Mu2e

 Experiment seeks CLFV with muons in the field of Al nuclei

 $\mu^- + AI \rightarrow e^- + AI$

- Stopped muons occupies 1s state in nucleus forming muonic atoms where it decays
- Signal electron emitted with energy 105 MeV (rest mass of μ)
- Experiment will measure ratio of $\mu \rightarrow e$ conversions to number of μ captures

$$R_{\mu e} = \frac{\Gamma[\mu^- + A(Z, N) \to e^- + A(Z, N)]}{\Gamma[\mu^- + A(Z, N) \to \nu_{\mu} + A(Z - 1, N + 1)]}$$

Sources of Background

- 0.41 total background events in 3 year running at design intensity
- Muon Decay in Orbit DIO: 53%
- Anti-Protons: 24%
- Cosmic Rays: 12%
- Other Background: 11%

Achieving Mu2e Sensitivity

- Single event sensitivity of 2.87×10^{-17} (10⁴ improvement in sensitivity)
- Mass reach on the order of 1000 TeV (far heavier than direct reach of LHC)
- Far more muons on target
- Apparatus strategically designed to remove significant amount of background
- More time between proton pulses allows significant dissipation of background before signal window

Experimental Apparatus

- Pulsed 8 GeV proton beam sent to W production target
- S shaped solenoid selects negative particles and allows remaining pions to decay to muons
- Muons stop at Al stopping target where electron is emitted isotropically
- Annular design of tracker detects fine range of electron energy
- Experiment to be located at Fermilab

Tracker Design

- Tracker composed of stacked planes, each containing 6 panels
- Each panel contains 96 straws filled with 80:20 Ar *CO*₂ mixture
- Magnetic field applied along the axis at 1 T to create helical path of charged particles
- Tracker evacuated to maintain predictable electron trajectory
- Geometry of tracker designed to see only signal energy electrons

Seeing Signal with Straws

- Straws have 15 μm thick mylar walls which surround 25 μm diameter, Gold plated, Tungsten sense wires
- Interior and exterior coated with Aluminum
- Inner Aluminum coated with Gold, which makes outer wall cathode
- Ar is ionized by charged particle and signal is collected by the sense wire
- CO₂ easily permeates through mylar

Leak Test Apparatus

- The leak rate of each straw will be measured in the apparatus
- Straw pressurized 1 atm higher than ambient pressure with 50:50 Ar *CO*₂ mixture
- CO₂ detector inside of detector box along with fan to circulate gas

Determining Leak Rate

- Controlled insertion of CO₂ into internal mode used as calibration
- Gives us the volume of the chamber
- N₂ flushed through chamber in external mode
- CO₂ detector measures the change in CO₂ concentration from straw leakage as a function of time

Results

- \bullet Leak rate determined to be $1.8\times10^{-5}~\text{ccm}$
- Leak rate ceiling is 30×10^{-5} ccm
- Straw leak rate lower than maximum allowed leak rate

- Measuring CLFV transition of $\mu \to e$ indicates physics beyond the Standard Model
- Mu2e has single event sensitivity of 2.87×10^{-17}
- Tracker design crucial for finding signal electrons
- All of the straws in the tracker need to be leak tested to ensure quality of the vacuum
- Lower limit of mass reach established if $\mu \to e \mbox{ not}$ observed