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ABSTRACT

We extend the approach underlying the well-known Dix
equation in reflection seismology to surface waves. Within
the context of surface wave inversion, the Dix-type relation
we derive for surface waves allows accurate depth profiles of
shear-wave velocity to be constructed directly from phase
velocity data, in contrast to perturbational methods. The depth
profiles can subsequently be used as an initial model for non-
linear inversion. We provide examples of the Dix-type rela-
tion for under-parameterized and over-parameterized cases.
In the under-parameterized case, we use the theory to esti-
mate crustal thickness, crustal shear-wave velocity, and
mantle shear-wave velocity across the Western U.S. from
phase velocity maps measured at 8-, 20-, and 40-s periods.
By adopting a thin-layer formalism and an over-parameter-
ized model, we show how a regularized inversion based on
the Dix-type relation yields smooth depth profiles of shear-
wave velocity. In the process, we quantitatively demonstrate
the depth sensitivity of surface-wave phase velocity as a
function of frequency and the accuracy of the Dix-type re-
lation. We apply the over-parameterized approach to a near-
surface data set within the frequency band from 5 to 40 Hz
and find overall agreement between the inverted model and
the result of full nonlinear inversion.

INTRODUCTION

Dix (1955) derived an approximate but widely used method of
inversion of stacking velocities, computed from reflections at dis-
crete interfaces, for the velocities of the layers between the inter-
faces known as interval velocities. The method is based on the
assumption that, at short offsets, the stacking velocity of the nth

interface Vst;n is equal to the root-mean-square (rms) velocity of
the layers above the interface depth weighted by traveltimes:

Vst;n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

n
i¼1 V

2
iΔtiP

n
i¼1 Δti

s
; (1)

in which Vi andΔti are the velocity and the vertical two-way travel-
time through the ith layer, respectively. Equation 1 implies a linear
relationship between the squared stacking velocities and the squared
interval velocities with the approximation being based on short off-
sets (Taner and Koehler, 1969; Yilmaz, 1987). Dix (1955) solved
equation 1 exactly for the interval velocities, and the resulting ana-
lytical expression is commonly referred to as the Dix equation.
However, in practice, the exact solution is not robust in the presence
of noise and therefore regularization must be applied to equation 1
to obtain meaningful results (Harlan, 1999; Koren and Ravve,
2006). Approaches based on the work of Dix (1955) have been ex-
tended to converted waves for the estimation of shear wave interval
velocities (Stewart and Ferguson, 1997) and to anisotropy (Grechka
et al., 1999).
Here, we report on an extension of the Dix technique to surface

waves. By analogy with equation 1, we show that surface-wave
phase velocity is the counterpart of stacking velocity, and the shear
wave velocity of a layer is the counterpart of interval velocity. In-
stead of weighting with traveltime, as in equation 1, the weighting
in the surface-wave case is based on the associated eigenfunctions.
The initial form of the theory we present is based on the idea of
representing Rayleigh waves at each frequency as propagating in
a different homogeneous half space. After deriving a Dix-type re-
lation based on a homogeneous medium, we extend the theory to
include the possibility of Rayleigh or Love waves propagating in
velocity-depth profiles described by power laws. In unconsolidated
granular deposits, such power-law profiles constitute a more real-
istic model of shear wave velocity than a homogeneous model

Manuscript received by the Editor 28 December 2014; revised manuscript received 28 April 2015; published online 16 October 2015.
1U.S. Geological Survey Volcano Science Center, Alaska Volcano Observatory, Anchorage, Alaska, USA. E-mail: mhaney@usgs.gov.
2California Institute of Technology, Seismological Laboratory, Pasadena, California, USA. E-mail: tsai@caltech.edu.
© 2015 Society of Exploration Geophysicists. All rights reserved.

EN167

GEOPHYSICS, VOL. 80, NO. 6 (NOVEMBER-DECEMBER 2015); P. EN167–EN177, 5 FIGS., 1 TABLE.
10.1190/GEO2014-0612.1



(Godin and Chapman, 2001; Bergamo and Socco, 2013; Tsai and
Atiganyanun, 2014).
Although surface-wave inversion is a highly nonlinear problem

(Xia et al., 1999), the Dix-type relation we derive for surface waves
is linear in terms of the squared shear wave layer velocities. Thus, it
can be used to generate a reliable starting model for subsequent iter-
ative nonlinear inversion. Such an approach has not been discussed
previously for surface waves, although Xia et al. (1999) present a
related data-driven method for constructing a starting model for sur-
face-wave phase velocity inversion. From the Dix-type relation for
surface waves, we are able to make a connection to the starting
model generation method of Xia et al. (1999). We formulate an
underparameterized version of the Dix-type relation for a model
of a single layer over a half-space and map crustal thickness across
the western United States from phase velocity maps measured at
three periods. The map of crustal thickness and values for crustal
and mantle velocity agree well with what is known about crustal
structure. We further develop an overparameterized Dix-type inver-
sion and apply the method to synthetic data and field data recorded
in a near-surface setting. In the process, we quantify the error in-
herent in our approximation and elucidate the depth sensitivities of
Rayleigh and Love waves.

METHOD

Fundamental-mode Rayleigh waves

We first consider the dispersion of fundamental-mode Rayleigh
waves. Equation 7.75 in Aki and Richards (1980) states that a Ray-
leigh-wave eigenfunction satisfies

ω2I1 − k2I2 − kI3 − I4 ¼ 0; (2)

where I1, I2, I3, and I4 are given by

I1 ¼
1

2

Z
∞

0

ρðr21 þ r22Þdz; (3)

I2 ¼
1

2

Z
∞

0
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in which ρ is the density, λ is Lamé’s first parameter, and μ is the
shear modulus. In equations 3–6, r1 and r2 represent the horizontal
and vertical Rayleigh-wave displacement eigenfunctions. For a
given frequency ω, equation 2 leads to a generalized quadratic
eigenvalue/eigenvector equation in terms of the wavenumber k,
and the eigenfunctions r1 and r2.
Classical Rayleigh-wave inversion proceeds, as described by Aki

and Richards (1980), by perturbing equation 2 and finding a linear-
ized relation between the perturbation in phase velocity c ¼ ω∕k
and perturbations in the material properties ρ, λ, and μ. The inver-

sion is nonlinear and involves iteratively adjusting an initial model
until convergence is obtained.
By adopting some approximations, a more straightforward type

of inversion can be realized for the fundamental Rayleigh mode. In
contrast to the classical method, this approximate method is not
based on perturbations. The idea is based on using an approximate
eigenfunction in equation 2 and solving for phase velocity. A sim-
ilar approach based on approximate eigenfunctions was used by
Tsai et al. (2012) in their evaluation of surface-wave scaling for
a power-law velocity profile. The approximation we use is based
on Rayleigh’s principle. This principle states that when there is
a perturbation in medium properties, the eigenvalue change is of
first order in terms of the medium property change, whereas the
change in the eigenfunction is at least a second-order effect (Snieder
and Trampert, 1999). As described below, the method we develop
matches the eigenvalue, or phase velocity, at a given frequency but
uses an approximate eigenfunction. The approximation is exact to
first order in the limit of a weakly heterogeneous velocity profile.
Away from this limit, the approximation becomes worse but still
provides a reasonable solution. Our initial approximate eigenfunc-
tions result from the assumption that, at a given frequency ω, the
Rayleigh wave propagates in a homogeneous medium with constant
density, a Poisson’s ratio of 0.25 (λ ¼ μ), and a shear velocity that is
a factor of 0.9194−1 times the observed phase velocity at that fre-
quency. Note that the method can be formulated for other values of
Poisson’s ratio; however, we choose a value of 0.25 for illustrative
purposes. With these assumptions, at each frequency, the Rayleigh
wave is assumed to be propagating in a different homogeneous
medium. This procedure is similar to the approximation of a homo-
geneous medium with velocity equal to the rms velocity overlying a
layer in the Dix equation (Dix, 1955). Because the medium we con-
sider is homogeneous, the eigenfunctions are known analytically
(Lay and Wallace, 1995):

r1ðzÞ ¼ e−0.8475kz − 0.5773e−0.3933kz (7)

r2ðzÞ ¼ 0.8475e−0.8475kz − 1.4679e−0.3933kz. (8)

We take the subsurface model to be inverted for as made up of N
uniform layers each with a different shear velocity β. Layer 1 ex-
tends from depth h1 to h2, and so on. For simplicity, the depth at the
top of the model h1 is set to 0. Layer N, the deepest layer, extends
from hN to infinite depth. Inserting this depth model into equa-
tions 2–6, along with equations 7 and 8, the assumption of constant
density and a Poisson’s ratio of 0.25, results in the following rela-
tion upon performing the integrals analytically:

c2m ¼
P

N
n¼1 ½−3.5305e−1.6950kmz þ 7.8286e−1.2408kmz − 5.3471e−0.7866kmz�hnþ1

hn
β2nP

N
n¼1 ½−1.0137e−1.6950kmz þ 2.9358e−1.2408kmz − 3.1630e−0.7866kmz�hnþ1

hn

;

(9)

where the expressions in brackets are evaluated at the deepest
depth hnþ1 minus the shallowest depth hn of the nth layer. Note
that subscriptm in equation 9 represents themth frequency at which
a phase velocity measurement is available and km ¼ ωm∕cm. Only
the h1 ¼ 0 term of the summation in the denominator survives the
sum over the layers. This leads to a factor of 1.2409 in the denom-
inator, yielding

EN168 Haney and Tsai



c2m ¼
XN
n¼1

½−2.8450e−1.6950kmz þ 6.3086e−1.2408kmz − 4.3089e−0.7866kmz�hnþ1

hn
β2n.

(10)

Denoting the function in the brackets by fðkm; zÞ, this equation is
further simplified as

c2m ¼
XN
n¼1

½fðkm; hnþ1Þ − fðkm; hnÞ�β2n; (11)

where fðkm; h1 ¼ 0Þ ¼ −0.8453 ¼ −f0. Equation 11 can be repre-
sented as a matrix-vector relationship between the squared phase
velocities and the squared shear velocities of the layers:

~c2 ¼ G ~β2; (12)

where G is a matrix of size M × N with M being the number of
phase velocity measurements and N being the number of layers.
In the formulation of equation 12, the depths of the layer boundaries
are set, and only the shear velocities of the layers are unknown. The
relation between the squared phase velocities and the squared layer
velocities is analogous to the Dix-type relation between the squared
stacking velocities and squared interval velocities (Dix, 1955).
Thus, by analogy, equation 12 represents a Dix-type relation for
surface waves. In contrast to the Dix-type relation for reflections,
the matrix G in the surface-wave case is not a lower triangular ma-
trix. Due to the lower triangular structure of the matrix for the re-
flection case, the matrix can be inverted analytically yielding the
exact solution known as the Dix equation (Dix, 1955). Such an ana-
lytical solution does not exist for surface waves; however, as we
show in a later section, the regularized pseudoinverse of G displays
a clear pattern that represents the depth range of surface-wave sen-
sitivity at a given frequency.

Fundamental-mode Love waves

Our formulation of the Dix-type relation for surface waves up to
this point does not work for Love waves because they do not exist in
a homogeneous half space. To develop a theory for Love waves, we
instead consider depth models described by power-law velocity pro-
files, in which Love waves exist. Such models are generic and may
provide a more realistic description of the shallow subsurface than a
homogeneous model in many cases (Godin and Chapman, 2001;
Bergamo and Socco, 2013; Tsai and Atiganyanun, 2014). Similar
to the development of the theory for Rayleigh waves, equation 7.69
in Aki and Richards (1980) states that a Love-wave eigenfunction
satisfies

ω2I1 − k2I2 − I3 ¼ 0; (13)

in which I1, I2, and I3 are given by

I1 ¼
1

2

Z
∞

0

ρl21dz; (14)

I2 ¼
1

2

Z
∞

0

μl21dz; (15)

I3 ¼
1

2

Z
∞

0

μ

�
∂l1
∂z

�
2

dz; (16)

and where l1 represents the Love-wave displacement eigenfunction
in equations 14–16. For a given frequency ω, equation 13 leads to a
generalized eigenvalue/eigenvector equation in terms of the squared
wavenumber k2 and l1.
To develop the Dix-type relation for Love waves, we need an

approximate eigenfunction for power-law velocity profiles. We
consider an exponential approximation, l1 ∼ e−akz, as is also
used by Tsai et al. (2012). By fitting this functional form to
the exact Love-wave eigenfunctions over a range of realistic
power-law velocity profiles described by βðzÞ ∼ zα for α ∈
½ 0.250 0.275 0.300 0.325 0.350 0.375 0.400 �, we find
that a ¼ 0.85� 0.09. Proceeding as in the Rayleigh-wave case,
we insert this approximate eigenfunction into equations 13–16
along with a layered depth model and find, upon performing the
integrals analytically, that

c2m ¼ ð1þ a2Þ
XN
n¼1

ðe−2akmhn − e−2akmhnþ1Þβ2n; (17)

which is the analog of equation 10. Denoting the function fðkm; zÞ ¼
−ð1þ a2Þe−2akmz for the case of Love waves, this equation can be
put into a form identical to equation 11 for Rayleigh waves:

c2m ¼
XN
n¼1

½fðkm; hnþ1Þ − fðkm; hnÞ�β2n; (18)

which shows that, as seen previously for Rayleigh waves, there is a
matrix-vector relationship between the squared Love-wave phase
velocities and the squared layer shear velocities.

Rayleigh waves in a power-law velocity profile

Because we have just considered power-law velocity profiles for
Love waves, we can also develop a more advanced Dix-type relation
for Rayleigh waves based on their approximate eigenfunctions in a
power-law velocity profile. Guided by the forms in equations 7 and 8,
we take a biexponential approximation for the horizontal eigenfunc-
tion given by r1 ∼ C1e−a1kz þ C2e−a2kz and a similar biexponential
approximation for the vertical eigenfunction r2. By fitting these func-
tional forms to the exact Rayleigh-wave eigenfunctions over a range
of realistic power-law velocity profiles as discussed previously for
Love waves, we find the constants for the biexponential approxima-
tions as shown in Table 1. With these approximations, we proceed as
we did previously for Rayleigh waves and arrive at an equation iden-
tical in form to equation 11, except that the function in brackets
fðkm; zÞ is given by the following equation:

fðkm; zÞ ¼ −103.14e−1.8586kmz þ 6.1446e−1.7714kmz

þ 217.12e−1.7555kmz − 10.312e−1.7012kmz

− 160.68e−1.6842kmz þ 1.2856e−1.6683kmz

− 115.00e−1.6524kmz þ 294.66e−1.6140kmz

þ 4.0924e−1.5981kmz − 135.49e−1.5438kmz: (19)

Note that the biexponential fits in Table 1 assume a Poisson’s ratio
equal to 0.25, although the coefficients do not vary greatly for other
realistic values of Poisson’s ratio.
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INVERSION WITH AN UNDERPARAMETERIZED
MODEL

Here, we consider a simple modification of equation 11 for a
model of a single layer over a half space in which the thickness
of the layer is not assumed to be known. In contrast to the case when
the layer boundaries are fixed, this problem is nonlinear due to the
dependence on the unknown depth of the layer. For this underpar-
ameterized model, there are three unknowns, β1, h2, and β2, and a
model can be determined by three or more phase-velocity measure-
ments. This scenario is applicable for finding the thickness of a shal-
low, unconsolidated layer above bedrock or, at a larger scale, the
thickness of the earth’s crust. Surface-wave dispersion has tradition-
ally been one of the key data sets for determining the thickness of
the earth’s crust (Evison et al., 1959). In a later section, we contrast
this approach with an overparameterized model composed of many
thin layers whose boundaries are fixed.
For ease of notation, let fðkm; h2Þ ¼ fm. Here, we adopt the

homogeneous medium formulation to define f using equation 10.
Then, the equations resulting from equation 11 evaluated at the
three frequencies of observation are as follows:

c21 ¼ f0β21 þ f1ðβ21 − β22Þ; (20)

c22 ¼ f0β21 þ f2ðβ21 − β22Þ; (21)

c23 ¼ f0β21 þ f3ðβ21 − β22Þ. (22)

Solving equations 20 and 21 for β21 and β22 results in

β21 ¼
f2c21 − f1c22
f0ðf2 − f1Þ

; (23)

β22 ¼ β21 þ
c21 − c22
f2 − f1

. (24)

Substituting equations 23 and 24 into equation 22 results in

0 ¼ ðf2 − f3Þc21 þ ðf3 − f1Þc22 þ ðf1 − f2Þc23; (25)

which is a nonlinear equation in terms of the thickness of the layer
only. By scanning over possible thicknesses and finding the thick-
ness that minimizes the absolute value of the expression on the right
side of equation 25, the thickness of the layer can be estimated. This
estimate of the thickness can in turn be inserted into equations 23

and 24 to find estimates of the shear velocities of the layer and half-
space. To select a thickness as the optimal value, we additionally
require that the resulting velocities computed from equations 23
and 24 are real valued.
In Figure 1, we show the result of this inversion methodology for

an underparameterized model at the continental scale. We use phase
velocity maps of the western United States at 8-, 20-, and 40-s peri-
ods constructed by Lin et al. (2008, 2009) from ambient noise cor-
relations. The phase velocity maps of Lin et al. (2008, 2009) use the
dense USArray Transportable Array deployment of more than 800
stations and exist on a grid of 0.2° × 0.2°. Eikonal tomography (Lin
et al., 2009) of the measured phase traveltimes derived from ambi-
ent noise correlations at each period yields the phase velocity maps.
From these three phase velocity measurements, crustal thickness,
crustal shear wave velocity, and mantle shear wave velocity can
be found by applying equations 23–25. Figure 1a and 1b shows
a map and histogram of the estimated crustal thickness. Several fea-
tures in Figure 1a agree with known crustal structure of the western
United States, including the thick crust beneath the central Rocky
Mountains and the thin crust in the Basin and Range province (Chu-
lick and Mooney, 2002). The histogram in Figure 1b shows a thick-
ness distribution peaked at 36 km, close to the average thickness of
the North American crust found by Chulick and Mooney (2002) to
be 36.7 km. This depth is also close to the crust-mantle interface at
35 km in the IASP91 model (Kennett and Engdahl, 1991). Fig-
ure 1c-1f depicts the results for crustal and upper mantle shear wave
velocity, with a clear indication of an overall approximately 25%

contrast in shear wave velocity between the crust and mantle. This
velocity contrast between the crust and upper mantle is also sup-
ported by the IASP91 model (Kennett and Engdahl, 1991). In Fig-
ure 1e, the Yellowstone hotspot (YH) track is clearly imaged as a
low shear wave velocity zone in the upper mantle. Such widespread
imaging of crustal thickness, crustal shear wave velocity, and man-
tle shear wave velocity can be used in other areas with dense net-
works of seismometers. Although this example is at the continental
scale, we expect the theory will apply in other settings in which the
surface waveguide can be approximated as a single layer.

INVERSION WITH AN OVERPARAMETERIZED
MODEL

Returning to equation 12, we now consider an inversion model
composed of many thin layers. Such an approach, when applied to
the modeling of surface-wave dispersion, is known as the thin-layer
method (Lysmer, 1970; Kausel, 2005; Haney et al., 2010). When
applied to inversion, this is an overparameterized method in which
a choice of regularization leads to a preferentially smooth model. A

Table 1. Mean coefficients and their standard deviation for the fit of a biexponential model to the horizontal r1 and vertical r2
Rayleigh-wave displacement eigenfunctions over a range of power-law shear velocity profiles described by β�z� ∼ zα for
α ∈ � 0.250 0.275 0.300 0.325 0.350 0.375 0.400 �. These biexponential fits assume a Poisson’s ratio equal to 0.25. The
biexponential model is given by C1e−a1kz � C2e−a2kz. Note that because eigenfunctions are determined up to a constant multiplier,
the C1 coefficient for r1 has been set to unity.

Eigenfunction a1 a2 C1 C2

r1 0.8421� 0.0426 0.7719� 0.0372 1.0000� 0.0000 −0.8929� 0.0101

r2 0.9293� 0.0428 0.8262� 0.0316 0.8554� 0.0841 −0.9244� 0.0855
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similar type of constrained inversion has been presented within the
context of the classical Dix equation in reflection seismology to ob-
tain smooth interval velocities (Harlan, 1999). We describe the
regularized inversion for the matrix-vector relationship between
surface-wave phase velocity and the depth profile of shear wave
velocity as given in equation 12.
We adopt a method for regularizing the linear inversion problem

based on weighted-damped least squares. Data covariance and
model covariance matrices Cd and Cm are chosen as in Gerstoft
et al. (2006). The data covariance matrix is assumed to be a diagonal
matrix

Cd ¼ σ2dI; (26)

where I is the identity matrix and σd is the data standard deviation.
For simplicity, the standard deviation is assumed to be the same for
all data points (i.e., all phase velocity measurements). The model
covariance matrix has the form

Cmði; jÞ ¼ σ2m expð−jzi − zjj∕lÞ; (27)

where σm is the model standard deviation, zi and zj are the depths at
the top of the ith and jth layers, and l is a smoothing distance.
With the covariance matrices so chosen, the inversion proceeds

by forming an augmented version of equation 12 (Snieder and
Trampert, 1999; Aster et al., 2004):

�
C−1∕2

d G
C−1∕2

m

�
~β2 ¼

�
C−1∕2

d
~c2

C−1∕2
m

~β20

�
; (28)

where ~c2 is the phase velocity data and β20 is the shear wave velocity
of a half-space model whose surface-wave velocity is equal to the

maximum value of the measured phase velocity. For example, if
cmax is the maximum value of measured phase velocity, β0 ¼
cmax∕0.9194. Note that the constraint containing β20 in equation 28
is designed to force the model to be close to the half-space value β0
in areas with poor resolution, i.e., at depths below the resolution
depths of surface waves. The augmented matrix-vector relation
in equation 28 can be solved for the shear wave velocity-depth pro-

file ~β2 by least squares.
In Figure 2, we show the result of the regularized inversion for

synthetic data generated for a model of a layer over a half-space.
The layer is 60 m thick with an shear wave velocity of 1155 m∕s.
The half-space has an shear wave velocity of 1732 m∕s. We keep
Poisson’s ratio constant throughout the model at 0.25 and use the
Gardner relation (Gardner et al., 1974) to compute density from the
shear wave velocity. We model the phase velocities from 3 to 13 Hz,
in steps of 0.2 Hz, with the thin-layer method (Lysmer, 1970; Kau-
sel, 2005; Haney et al., 2010), which is a finite-element variational
method for solving the surface-wave dispersion problem with arbi-
trary accuracy. After modeling, we corrupt the synthetic phase-
velocity data with 1% noise. Although this example uses 1% noise,
we note that the method is robust and can handle larger amounts
of noise.
We setup an inversion model consisting of 150 layers, with all

layers 10-m thick except for the bottom layer, which extends to in-
finite depth. Although the layers are fixed, the layers are thin
enough compared with the wavelengths that the inversion model
acts more like a continuum whose gross properties are controlled
by the regularization scheme described in equations 26 and 27. As
in the previous underparameterized example, we adopt the homo-
geneous medium formulation in the following to define f using
equation 10. With the synthetic data and the inversion model, we
can construct the matrix G in equation 12 as shown in Figure 2a.
The matrix G has a structure determined by the eigenfunctions at

Figure 1. (a) Crustal thickness, (c) crustal shear
velocity, and (e) mantle shear velocity determined
from phase velocity maps at 8-, 20-, and 40-s peri-
ods across the western United States. Phase veloc-
ity maps are from Lin et al. (2008, 2009). In panel
(a), the Rocky Mountain Front (RM) is clearly a
region of anomalously thick crust, and the Great
Basin (GB) exhibits a thin crust. Panels (b, d,
and f) show histograms of the crustal thickness,
crustal shear velocity, and mantle shear velocity.
The distribution of crustal thicknesses peaks at
36 km in close agreement with typical 1D earth
models, e.g., the Gutenberg model (Aki and Ri-
chards, 1980) and the IASP91 model (Kennett
and Engdahl, 1991). Crustal and mantle shear
velocities also cluster around nominal values of
3.5 and 4.5 km∕s, in agreement with the Guten-
berg and IASP91 models. The YH track is clearly
visible in panel (e).
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each frequency, with lower frequencies extending to greater depth
as is normal with surface waves. We take the data and model stan-
dard deviations in equations 26 and 27 to correspond to velocities
of 20 and 40 m∕s, respectively, and use a smoothing length of
50 m. Note that, because the inverse problem is in terms of squared
velocities, the standard deviations σd and σm are actually 400 and
1600 m2∕s2, respectively. With these regularization parameters,
we can form the regularized pseudoinverse of G as shown in Fig-
ure 2b. The pseudoinverse has a structure characterized by a dis-
tinctive ridge that becomes deeper with lower frequencies. This
structure means that the sensitivity of phase-velocity measure-
ments has a relatively compact depth range determined by the
width of the ridge. In Figure 2b, we also plot a depth-frequency
relation given by Xia et al. (1999) to construct initial models for
surface-wave inversion. Xia et al. (1999) found from modeling
that a Rayleigh-wave phase velocity cR with wavelength λ could
be mapped to a shear velocity of cR∕0.88 at a depth equal to 0.63λ.
As can be seen in Figure 2b, the depth 0.63λ corresponds closely
with the peak of the ridge. The connection with the depth given by
0.63λ demonstrates that the Dix-type relation is a generalized
version of the method presented by Xia et al. (1999) for initial

model construction. Instead of mapping the shear wave velocity
exactly along the depth given by 0.63λ, the regularized inversion
based on the Dix-type relation distributes the sensitivity among all
depths with the peak sensitivity occurring along the ridge.
We plot the true and inverted depth profiles in Figure 2c. Whereas

the true model consists of a sharp interface between the layer and
half-space, the regularized inversion finds a smooth model that
adequately fits the data. The smooth model captures the overall
trend of the true model, with the layer and half-space velocities re-
covered at shallow and deep levels and the interface smoothed in
between. Note that the maximum depth shown in Figure 2c has been
determined based on the depth when the diagonal of the resolution
matrix, the product of the pseudoinverse of G and G itself, is at 1%
of its peak value. Also shown in Figure 2c are the depth models
obtained from the method of Xia et al. (1999) and the underpara-
meterized two-layer method presented previously. We used the
phase velocity values from the dispersion curve (including noise)
at 3, 8, and 13 Hz for the underparameterized method. Although
there is a correspondence in Figure 2b between the mapping used
by Xia et al. (1999) and the pseudoinverse, the regularized inversion
based on the Dix-type relation generates the more accurate depth

model. The underparameterized two-layer method
performs best of all, owing to the fact that the true
model is a layer over a half-space.
We show the data space in Figure 2d with

good agreement between the synthetic data
(red) and the predicted data (blue solid) from
equation 12 based on the inverted depth model
in Figure 2c. However, as discussed previously,
equation 12 is an approximation. Full Rayleigh-
wave dispersion modeling using the inverted
velocity-depth profile (blue curve in Figure
2c) with the thin-layer method, assuming a Pois-
son’s ratio of 0.25 and the Gardner relation for
density, results in the exact dispersion curve
given by the blue dashed line. The discrepancy
between the exact dispersion curve and the
dispersion curve predicted from equation 12
can be resolved with subsequent nonlinear in-
version using the smooth depth profile in Fig-
ure 2c as an initial model. Thus, inversion
based on the Dix-type relation is not designed
to be a high-precision method, but it can provide
a good initial model for further refinement with
nonlinear inversion. Moreover, as seen in Fig-
ure 2d, the discrepancy between the result of full
Rayleigh-wave dispersion modeling is not as pro-
nounced for the Dix-type relation as it is for the
initial model generation method of Xia et al.
(1999). This further demonstrates that the Dix-
type relation is an improved, generalized version
of the mapping presented by Xia et al. (1999).
In Figure 3, we compare inversion results for

the three Dix-type relations we have derived: Ray-
leigh waves based on a homogeneous half-space,
Rayleigh waves based on power-law velocity pro-
files, and Love waves based on power-law veloc-
ity profiles. The comparisons are done using
synthetic data generated for a power-law velocity

Figure 2. (a) Matrix G from equation 12 constructed from synthetic data for a layer-
over-a-half-space model, showing the increasing depth sensitivity of surface waves to
shear wave velocity at lower frequencies. (b) The regularized pseudoinverse of G.
Shown as a dashed white line is the depth equal to 0.63λ, in which λ is the wavelength.
That depth is the approximate sensitivity depth used by Xia et al. (1999) to construct
initial models for surface-wave inversion. (c) The layer-over-a-half-space model (red)
and the inversion result (blue). Also shown as a black line is the depth model obtained by
the initial model method of Xia et al. (1999). The blue dashed-dotted line is the result of
the underparameterized two-layer method discussed in this paper using phase velocities
at 3, 8, and 13 Hz. (d) The synthetic data corrupted by 1% noise (red) and the predicted
data (blue solid) from the inverted model based on equation 12. Shown in the blue
dashed line is the result of full Rayleigh-wave dispersion modeling using the inverted
velocity-depth profile in panel (c). The discrepancy between the solid and dashed blue
lines represents the additional misfit that can be addressed by nonlinear inversion. The
black dashed line is the result of full Rayleigh-wave dispersion modeling using the depth
model plotted as a black line in panel (c).
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profile described by βðzÞ ∼ z0.3, in which the proportionality is
determined by β being equal to 3000 m∕s at a depth of
1500 m. As with the inversion results in Figure 2, the synthetic
data have been corrupted by 1% noise. All modeling, inversion,
and regularization parameters used in Figure 3 are the same as
described previously for Figure 2. The constants for the exponen-
tial and biexponential approximations of Love- and Rayleigh-
wave eigenfunctions are taken from their mean values over the
ranges analyzed.
Figure 3a–3c depicts the results for Rayleigh-wave inversion

based on a homogeneous half-space, the same type of inversion
as is shown in Figure 2. Although based on a homogeneous
half-space at each frequency, the inversion performs reasonably
well considering the synthetic data are derived from a power-
law model, especially between the depths of 50 and 150 m. This
may be due in part to the fact that the regularization seeks a smooth
model, and power-law velocity profiles are inherently smooth. As
observed previously, the ridge of high sensitivity in Figure 3a cor-
responds closely to the relation 0.63λ. Figure 3d–3f depicts the
results for Rayleigh-wave inversion based on
power-law velocity profiles. Because the syn-
thetic data are derived from a power-law model,
the inversion in this case predictably does better,
capturing the entire depth profile more accu-
rately than in Figure 3b. Given the prevalence
of power-law velocity profiles in unconsoli-
dated deposits (Godin and Chapman, 2001; Ber-
gamo and Socco, 2013; Tsai and Atiganyanun,
2014), this type of Dix-type relation should be
applicable in the shallow subsurface. An inter-
esting feature of the Rayleigh-wave inversion
based on power-law velocity profiles is that
the ridge of high sensitivity in Figure 3d is
closer to 0.5λ than 0.63λ as shown by the black
dashed line. This suggests that the depth sensi-
tivity of Rayleigh waves is shallower in power-
law velocity profiles than in homogeneous half-
space models because the eigenfunctions are
more limited in their depth extent. Finally, in
panels (g-i) of Figure 3 we show the results
for Love waves. In this case, the depth sensitiv-
ity is significantly shallower than for Rayleigh
waves. The ridge of high sensitivity in Figure 3g
is closer to 0.25λ than 0.5λ or 0.63λ as shown by
the black dashed line. This suggests that the
depth sensitivity of Love waves is shallower
in power-law velocity profiles than for Rayleigh
waves. Besides the shallower sensitivity, the in-
version for Love waves is able to adequately fit
the synthetic data and provide a reasonable
depth model, albeit over a shorter depth range.
To quantify the error in the Dix-type relation,

we plot the nondimensional phase velocity coef-
ficient Cnd, described in Appendix A, in Figure 4
for the three cases considered in this paper: Love
waves in a power-law profile, Rayleigh waves in
a homogeneous profile, and Rayleigh waves in a
power-law profile. We also plot Cnd for the exact
solutions for Rayleigh and Love waves given by

Tsai and Atiganyanun (2014). As shown in Appendix A, the Dix-
type relation yields identical frequency scaling as the exact solu-
tion. Therefore, owing to the scaling properties of phase velocity
in power-law profiles, Cnd contains all the information needed to
fully compare the exact and approximate solutions. The deviation
of the approximate solution from the exact solution quantifies the
fractional error introduced by the Dix-type relation. In Figure 4,
the Dix-type relation for Rayleigh waves in a homogeneous profile
produces estimates of phase velocity that converge to the exact
solution at small values of the exponent describing the depth
dependence α. This behavior is expected because the depth profile
becomes more homogeneous at small α. At α ¼ 0.3, the homo-
geneous Dix-type relation overestimates the true phase velocity
by approximately 20%, in agreement with panels (b and c) in Fig-
ure 3. For α > 0.3, the homogeneous Dix-type relation is not a
satisfactory approximation and the power-law Dix-type relation
for Rayleigh waves can be used because it fits the exact solution
over a wide range of α. Similarly, the power-law Dix-type relation
for Love waves fits the exact solution over a wide range.

Figure 3. Performance of Rayleigh- and Love-wave inversion based on the Dix-type
relation with velocity models that have power-law variation with depth. (a) Regularized
pseudoinverse for Raleigh-wave inversion with approximate eigenfunctions taken from
a homogeneous model. The depth 0.63λ is given by a white dashed line as in Figure 2b.
(b) The power-law model (red) and the inversion result (blue). (c) The synthetic data
corrupted by 1% noise (red) and the predicted data (blue solid) from the inverted model
based on equation 12. Shown as a blue dashed line are the predicted data from the in-
verted model using full forward modeling of surface-wave dispersion. Panels (d-f) are
the same as panels (a-c) except that the approximate eigenfunctions are based on fitting
the eigenfunctions from a family of power-law models with a biexponential model as
described in Table 1. The depths 0.63λ and 0.5λ are given by white dashed and black
lines, respectively. Panels (g-i) are the same as panels (d-f) but are for the case of Love
waves instead of Rayleigh waves. The depth 0.25λ is given by a black dashed line with
0.63λ given by a white dashed line.
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NEAR-SURFACE EXAMPLE

To demonstrate that the Dix-type relation is capable of generating
accurate velocity profiles in the near surface, we have processed a
benchmark data set from the National Geotechnical Experimenta-
tion Site (NGES) at Texas A&M University (Michaels, 2011).
These data were provided to the community by the American Soci-
ety of Civil Engineers (ASCE) in 2010 to test surface-wave inver-
sion methods. The data set, shown in Figure 5a, consists of 62
geophones placed at 2-ft intervals with an inner offset of 40 ft. From
this receiver geometry, we compute the phase-velocity spectrum in
Figure 5b and pick the peak at each frequency to construct the mea-
sured dispersion curve.
We setup an inversion similar to the example shown in Figure 2,

using the homogeneous medium formulation to define f as shown
in equation 10. The model consists of 250 layers, with all layers
being 0.25-m thick except for the bottom layer, which extends
to infinite depth. With the NGES data and the inversion model,
we construct the matrix G as in equation 12 as shown in Figure 5c.
We take the data and model standard deviations in equations 26 and
27 to correspond with velocities of 5 and 10 m∕s, respectively, and
we use a smoothing length of 1 m. With these regularization param-
eters, the pseudoinverse plotted in Figure 5d has a similar appear-

Figure 4. Quantification of the error introduced by the approximate
Dix-type relations. Shown are nondimensional phase velocity coef-
ficient Cnd versus power-law exponent α for the three cases consid-
ered in this article: Love waves in a power-law profile (red dashed
line), Rayleigh waves in a homogeneous profile (black dashed line),
and Rayleigh waves in a power-law profile (blue dashed line). Exact
results (Tsai and Atiganyanun, 2014) for Rayleigh and Love waves
are given by blue and red lines, respectively.

Figure 5. Application of inversion based on the
Dix-type relation in a near-surface setting. (a) Data
set from the NGES. (b) Measured phase-velocity
curve (white dashed line) overlain on the phase-
velocity spectrum. (c) Matrix G from equation 12
constructed from the measured phase velocity.
(d) The regularized pseudoinverse of G. Shown
as a white dashed line is the depth equal to
0.63λ, in which λ is the wavelength. (e) The inver-
sion result (blue) and the depth model (red) ob-
tained by Michaels (2011) for the NGES data
using iterative nonlinear inversion. The Dix-type
inversion recovers several of the features of the
Michaels (2011) depth model, including the veloc-
ity reversal between 3- and 7-m depth. (f) The
measured phase-velocity curve (red) and the pre-
dicted data (blue solid) from the inverted model
based on equation 12. Shown as a blue dashed line
is the result of full Rayleigh-wave dispersion mod-
eling using the inverted velocity-depth profile in
panel (e).
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ance to the previous examples with a relatively compact ridge ex-
tending to depths of 30 m as frequency decreases.
We plot the inversion result in Figure 5e along with the depth

profile obtained by Michaels (2011) using standard, iterative
phase-velocity inversion. As can be seen, the Dix-type relation is
able to recover several of the same features as the result from Mi-
chaels (2011). Most notable is the velocity reversal between 3 and
7 m depth. This shows that, for this near-surface data set, the
approximation inherent in the Dix-type relation is not a severe limi-
tation. Figure 5f further bears out the accuracy of the Dix-type re-
lation for this data set, with the predicted data and dispersion curve
from full modeling in reasonably close agreement with each other.

DISCUSSION

In light of the connection we have found between the Dix-type
relation for surface waves and the initial model construction method
of Xia et al. (1999), it is instructive to return to the underparame-
terized inversion data example in Figure 1 and investigate why it
worked so well. Recall that, in the example, we used phase veloc-
ities measured at periods of 8, 20, and 40 s. Owing to the 0.63λ
depth sensitivity pointed out by Xia et al. (1999) and further dem-
onstrated by the pseudoinverse in Figure 2b, phase velocities at
these periods are sensitive to depths of 18, 44, and 88 km assuming
a nominal Rayleigh-wave phase velocity of 3.5 km∕s at these peri-
ods. These sensitivity depths bracket the average depth of the
Moho, 35 km. Therefore, using this period range is well suited
for resolving properties of the crust and upper mantle simultane-
ously from surface waves. Note that using precise Rayleigh-wave
phase velocities at these periods instead of the approximation of
3.5 km∕s to find the sensitivity depth does not change the overall
picture. Thus, the depth sensitivity of 0.63λ can be used to deter-
mine, a priori, a set of three phase-velocity measurements suitable
for resolving a surface waveguide of a given thickness above a
lower half-space.
In addition to the connection with the 0.63λ sensitivity depth, we

have also obtained results on the sensitivity depth of Rayleigh and
Love waves in velocity profiles in which the shear wave velocity
obeys a power law. In power-law velocity profiles, the sensitivity
depth is reduced relative to a homogeneous medium, and the Love-
wave sensitivity is significantly shallower than the Rayleigh-wave
sensitivity. We plan to address more details of surface-wave inversion
beyond the scope of phase velocities for fundamental-mode Rayleigh
and Lovewaves in the future. For example, it remains to be seen if the
Dix-type relation can be extended to group velocities and higher
modes, especially in the presence of Poisson’s ratio variations in
depth. Although the result with the NGES data set is promising, more
testing of the Dix-type relation with near-surface data sets is neces-
sary to establish its effectiveness. Of particular interest is the use of
the surface-wave Dix-type relation to process ground roll in explo-
ration seismic surveys for obtaining near-surface shear wave veloc-
ities (Haney and Douma, 2012; Douma and Haney, 2013). At the
continental scale, we also plan to apply the underparameterized
method for large-scale mapping of the Moho in regions with existing
surface-wave phase velocity maps.

CONCLUSIONS

We have extended the principles underlying the well-known Dix
equation in reflection seismology to surface waves. We discussed

the under- and overparameterized formulations of the inverse prob-
lem and extended the theory from homogeneous to power-law
velocity profiles to include Love waves and improve the approxi-
mation for Rayleigh waves. For the underparameterized formula-
tion, we applied the theory to invert for crustal thickness, crustal
shear velocity, and upper-mantle shear velocity across the western
United States from only three phase velocity measurements. We
made strong connections between the Dix-type relation and an
existing method for constructing initial models directly from Ray-
leigh-wave data. Our results indicate that the Dix formalism is valid
for surface waves and constitutes a reliable way for constructing
approximate velocity models directly from surface-wave dispersion
data. The Dix-type relation has also shed light on the depth sensi-
tivity of surface-wave dispersion data in a quantitative way based on
the analysis of the pseudoinverse matrix mapping squared phase
velocities into squared layer shear velocities. Finally, we tested the
methodology by processing a benchmark near-surface data set and
found good agreement between the inversion result based on the
Dix-type relation and a published depth profile generated with
classical surface-wave inversion.
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APPENDIX A

DIX-TYPE RELATION FOR A CONTINUOUSLY
LAYERED MEDIUM AND POWER-LAW SCALING

Equation 11 states that

c2m ¼
XN
n¼1

½fðkm; hnþ1Þ − fðkm; hnÞ�β2n. (A-1)

Denoting the quantity in brackets in the above equation as Δfn and
the depth interval hnþ1 − hn asΔhn, equation 11 can be rewritten as

c2m ¼
XN
n¼1

Δfn
Δhn

β2nΔhn; (A-2)

which is recognized as a Riemann sum whose limit for infinitesi-
mally thin layers is the integral

c2ðωÞ ¼
Z

∞

0

∂fðk; zÞ
∂z

β2ðzÞdz; (A-3)

in which k ¼ ω∕c. We now consider shear velocity profiles de-
scribed by a power law of the form:

βðzÞ ¼ β0

�
z
z0

�
α

: (A-4)

We also consider functions f that are generally represented as a sum
of J exponentials

Nonperturbational surface-wave inversion EN175



fðk; zÞ ¼
XJ
j¼1

aje−bjkz (A-5)

with coefficients aj and bj. This general form covers the three cases
considered in this article: Love waves in a power-law profile
(J ¼ 1), Rayleigh waves in a homogeneous profile (J ¼ 3), and
Rayleigh waves in a power-law profile (J ¼ 10). The derivative
of f with respect to z is given by

∂fðk; zÞ
∂z

¼ −k
XJ
j¼1

ajbje−bjkz. (A-6)

Substituting equations A-4 and A-6 into equation A-3 yields

c2 ¼ −k
XJ
j¼1

ajbjβ20z
−2α
0

Z
∞

0

e−bjkzz2αdz: (A-7)

The integral in equation A-7 is a Laplace transform given byZ
∞

0

e−bjkzz2αdz ¼ Γð1þ 2αÞ
ðbjkÞ2αþ1

. (A-8)

Substituting this expression and the relation k ¼ ω∕c into equa-
tion A-7 results in

c2 ¼ −β20z−2α0 ω−2αc2αΓð1þ 2αÞ
XJ
j¼1

ajb−2αj . (A-9)

Taking the square root of both sides of equation A-9 yields

c ¼ β0z−α0 ω−αcα
�
−Γð1þ 2αÞ

XJ
j¼1

ajb−2αj

�1
2

. (A-10)

We group all c terms on the left side of equation A-10 and introduce
a reference frequency ω0. This produces the following expression:

c1−α ¼ β0
ðz0ω0Þα

�
ω

ω0

�
−α
�
−Γð1þ 2αÞ

XJ
j¼1

ajb−2αj

�1
2

.

(A-11)

Finally, inverting the power on the c term on the left side of equa-
tion A-11 gives the expression

c ¼
�

β0
ðz0ω0Þα

� 1
1−α
�
ω

ω0

�
− α
1−α
�
−Γð1þ 2αÞ

XJ
j¼1

ajb−2αj

� 1
2ð1−αÞ

;

(A-12)

in which the first term on the right side has the physical dimension
of velocity and the remaining two terms are dimensionless. Note
that the Dix-type relation has the same frequency scaling as the ex-
act solution (Tsai and Atiganyanun, 2014). Following Tsai and Ati-
ganyanun (2014), we refer to the third term on the right side of
equation A-12 as the nondimensional phase velocity coefficient

Cnd ¼
�
−Γð1þ 2αÞ

XJ
j¼1

ajb−2αj

� 1
2ð1−αÞ

; (A-13)

which is plotted in Figure 4.
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