
Abstract

Ever since 1885, when Lord Rayleigh first predicted the existence of
waves that travel along a free surface, observations interpreted to be sur-
face waves have been remarkably useful for helping determine Earth struc-
ture and earthquake source properties. Yet despite the theory for both
Rayleigh and Love waves being well accepted, and the theoretical pre-
dictions accurately matching observations, the observation of their quan-
tifiable decay with depth has never been measured in the Earths crust.
The primary difficulty of confirming this decay of motion with depth is
that nearly all seismometers are placed at or near the Earths surface, or
in isolated borehole installations. In this work, we address this gap in
observations by making direct observations of both Rayleigh-wave and
Love-wave eigenfunction amplitudes over a range of depths, using data
collected at the three-dimensional Homestake Array for a suite of nearby
mine blasts. Observations of amplitudes over a range of frequencies from
0.4-1.2 Hz are consistent with theoretical eigenfunction predictions, with
clear exponential decay of amplitudes with depth, and a reversal in sign
of the radial-component Rayleigh-wave eigenfunction at large depths, as
predicted for fundamental-mode Rayleigh waves. Minor discrepancies be-
tween the observed eigenfunctions and those predicted using estimates
of the local velocity structure suggest that the observed eigenfunctions
could be used to improve the velocity model. Our results confirm that
both Rayleigh and Love waves have the depth dependence that they have
long been assumed to have. While this result is not unexpected, it pro-
vides new observational evidence that classical seismological surface-wave
theory is indeed relevant and can be used to accurately infer properties of
Earth structure and earthquake sources.
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1 Introduction

The existence of surface waves has been well predicted and described since at
least 1885 by Lord Rayleigh. Specifically, the interaction of compression (P) and
shear (S) waves with a free surface will set up either Rayleigh or Love waves along
that surface, with propagation velocities and amplitudes that depend on subsur-
face properties in a predictable manner. These have been observed and used in
countless studies in the Earth sciences, for example to constrain crustal proper-
ties from surface wave dispersion (e.g., Dziewonski and Anderson, 1981; Shapiro
et al., 2005) or ellipticity (e.g., Nakamura, 1989; Lin et al., 2008), to image and
understand earthquake source processes (e.g., Duputel et al., 2012)Kanamori,
and to better understand the strength of shaking that may occur in future
earthquakes (e.g., Kawase and Aki, 1989).

The existence of surface waves is well accepted in geophysics literature. How-
ever, perhaps what is the most defining characteristic of these surface waves,
that they decay in amplitude in some exponential manner as a function depth,
has never been directly demonstrated for the Earths crust. This decay in ampli-
tude is described by the eigenfunctions that result from solving the equations of
motion REF, but more than mathematical constructs, the actual particle mo-
tion amplitudes should exactly match these expectations. Most of our seismic
observations are constrained to the Earths surface on a (relatively speaking) 2D
plane, and even locations where borehole instruments were available, sensors
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have been either too sparsely spaced or at least the direct observation of surface
wave eigenfunctions have not been demonstrated.

In this paper, we confirm that observations of surface wave amplitudes as
a function of depth match expectations. These observations are collected from
an array of instruments in at the Sanford Research Labartory, previously the
Homestake Gold Mine, in South Dakota, U. S. MandicSRL. An array of 24
broadband instruments (15 underground and 9 above ground) were deployed
in a 3D array geometry in the otherwise mostly abandoned shafts of the mine,
covering a volume roughly 1500m in depth and lateral width (see Mandic for
a map Perhaps we should include a 3D / zoomed in version?). Blasts from a
nearby mine, on average roughly XXkm away, provide a source of seismic ex-
citations used for our observations of surface wave amplitude as a function of
depth, in the frequency range of 0.4 to 1.2 Hz. These observations are com-
pared to predictions of both Rayleigh and Love wave eigenfunctions from two
different approaches: by describing the eigenfunctions with a relatively simple
bi-exponential model that would perfectly describe the decay with depth for
halfspace or power-law velocity models (Tsai and Atiganyanun, 2014), and by
constraining a 1D velocity profile from ambient noise cross correlations and then
numerically predicting eigenfunctions. As will be shown, the classic descriptions
of surface waves eigenfunctions accurately describes the observations.

2 Methods

2.1 Observational Methods

try to make less mathematical. if needed move math to an appendix
do we want to include love-wave information?

We use transient seismic events to measure the surface-wave eigenfunctions.
([text from Gary/Ross on how picking is done, direction/blast time is estimated.
Maybe plot of transient events]).
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Figure 1: fill me
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For each transient event, we rotate from East West/North South coordi-
nates to radial and transverse coordinates. We then plot the waveform and a
frequency-time map of the phase delay between the radial and vertical channels
for each event for several surface stations. We identify times and frequencies
when the radial-to-vertical phase is consistent with retrograde motion, which
indicates that surface-waves are the dominant component of the seismic field.
We define the radial-to-vertical phase using the cross-correlation of radial and
vertical channels

φRV (f, t) = arctan

 Im
(
R̃∗(f, t)× Ṽ (f, t)

)
Re
(
R̃∗(f, t)× Ṽ (f, t)

)
 . (1)

R̃(f, t) indicates the Fourier transform of the radial data at frequency f for
the time segment starting at time t. Ṽ (f, t) indicates the same for the vertical
channel. The asterisk indicates complex conjugation, while “Im” indicates the
imaginary part of the cross-correlation and “Re” indicates the real part. ([add
figure with trace and ft-map? and/or location of mine blasts used? or table of
dates, etc.?]).
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Figure 2: Left: The trace for the YATES surface station vertical and radial
channels for an event July 23rd, 2015. Right: The vertical-to-radial phase, φRZ ,
for the same YATES station over the same time frame. We use 10 s discrete
Fourier transforms. The colorbar is normalized such that white indicates a phase
of −π/2, which corresponds to retrograde motion. We see strong evidence for
retrograde motion between 70 − 140 s and 0.2 − 1.2 Hz. make ticks and labels
larger.

We use 28 mine blasts observed by the Homestake seismometer array during
July 2015. We have used the above prescription to identify which parts of the
waveforms are dominated by surface waves. For each blast, we calculate as many
discrete Fourier transforms of length 10 s as possible for each seismometer in
the array. This leaves us with 0.1 Hz frequency resolution, and we restrict our
observations to the frequency band from 0.4 − 1.2 Hz for both the radial and
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the vertical channels because this is the region of frequency space where most of
the surface-wave power appears to be concentrated for these blasts. We refer to
the radial data point at frequency, f , and time, t, in seismometer, i, located at
depth, zi, as R̃i(f, t; zi), and the corresponding vertical data point as Ṽi(f, t; zi).

We are attempting to observe Rayleigh waves and so we only consider the
part of the radial measurement that is consistent with retrograde motion. This
means that we perform a projection of our data onto the phase angle consistent
with retrograde motion phrasing a bit awkward...

R̃i(f, t; zi) = −|R̃i(f, t; zi)| × Im eiφRV . (2)

In the above expression, vertical lines indicate modulus, and we use the mi-
nus sign to impose the condition that measurements consistent with retrograde
motion are positive, while those consistent with prograde motion are negative.
R̃i(f, t; zi) is now a real-valued quantity.

We then normalize each data point by the average over radial surface station
measurements of the corresponding time and frequency. That is

r̂i(f, t; zi) =
R̃i(f, t; zi)

mean
[
{R̃j(f, t; 0) for j where zj = 0}

] (3)

v̂i(f, t; zi) =
|Ṽi(f, t; zi)|

mean
[
{R̃j(f, t; 0) for j where zj = 0}

] (4)

In the above expressions, j runs over all stations positioned on the surface, and
the minus sign on the vertical component is taken to be consistent with the con-
vention in Haney and Tsai (2015). We remove measurements where r̂i(f, t; zi)
and v̂i(f, t; zi) are greater than 1.5, as values this large indicate outliers whose
amplitudes are much larger than the typical amplitude seen across the surface
stations. This removes 15% of the individual data pixels.

Finally, we take the mean and variance across all times at each depth and
each frequency. We indicate this with

ˆ̄r(f, z) =
1

Nt,z

∑
i for zi=z

∑
t

r̂i(f, zi; t) (5)

σ2
r(f, z) =

1

Nt,z

∑
i for zi=z

∑
t

(
r̂i(f, zi; t)− ˆ̄r(f, z)

)2
, (6)

where Nt,z indicates the total number of measurements across times and stations
at depth z.

In Figure 2 we show the distribution at 1 Hz of the ri(1, t; zi) and vi(1, t; zi)
as a function of depth with the violin plots, while the means, ˆ̄r(1; z) and ˆ̄v(1; z)
are indicated with orange points. The median across depths and times, as
opposed to the mean, is shown in red. The black bars indicate the 16th and
84th percentiles of the distributions shown in blue.
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Figure 3: Top: ditribution of radial measurements shown by violin plot. Red
and orange points indicate the median and mean of the distribution respectively.
Bottom: the same, except for the vertical measurements.maybe move this plot
to results section?

2.2 Markov Chain Monte Carlo Estimation of Model Pa-
rameters

(need to motivate bi-exponential model properly.) The plots in Figure 3 show
a distinctive shape that can be fit by a bi-exponential model. In Haney and
Tsai (2015) the authors construct a model for the fundamental R-wave eigen-
function based on a power-law velocity depth profile for S-waves. They fit a
bi-exponential model to the R-wave eigenfunction for many different theoretical
power-law velocity depth profiles and Poisson ratios and calculate the mean and
standard deviation of the parameters in those fits. For this model, the param-
eters of the bi-exponential model are independent of frequency, althought this
need not necessarily be trueadd a source for this statement?.

We use our measurements to estimate the parameters in the bi-exponential
fits to the radial and vertical data points. We use mR and mV to refer to
the bi-exponential models for the radial and vertical eigenfunctions, and these
models depend on a set of intrinsic model parameters, ~θ, the depth, z, and the
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Figure 4: Estimate of phase velocity as a function of frequency obtained from
ambient noise correlations at the 3D Homestake seismometer array. not sure
how else to cite this...Daniel is it possible to cite Daniel’s thesis? Feel free to
add comments on updates to plot itself as needed.

frequency, f . We define the mR and mV as

mR(f, z; ~θ) =
(
e
−2πfz

a1
cR(f) + c2e

−2πfz
a2

cR(f)

)
× 1

1 + c2
(7)

mV (f, z; ~θ) =
(
e
−2πfz

a3
cR(f) + c4e

−2πfz
a4

cR(f)

)
× Nvh

1 + c4
. (8)

These functions can be compared to r1 and r1 in Haney and Tsai (2015). Below,
we estimate the parameters in the bi-exponential model,

~θ = (Nvh, c2, c4, a1, a2, a3, a4),

using the data, ˆ̄v(f, z) and ˆ̄r(f, z). The assumption that the c’s and the a’s do
not change with frequency is intrinsic to the theoretical model outlined in Haney
and Tsai (2015) and could, in principle, be relaxed.

this paragraph may be better in previous section The phase velocity disper-
sion curve for R-waves, cR(f), is estimated using ambient noise correlations. A
plot of cR(f) is shown in Figure 4.

We use the MultiNest package Feroz et al. (2009) to perform a Markov chain

monte carlo (MCMC) analysis to estimate the parameters, ~θ. MultiNest is
commonly used in the astrophysics community, is designed to efficiently sample
multimodal distributions and large parameter spaces, and offers robust Bayesian
evidence estimates. The posterior probability distribution we use MultiNest to
explore is given by

p(~θ|{ˆ̄r, ˆ̄v}) =
p({ˆ̄r, ˆ̄v}|~θ)p(~θ)∫
d~θ p({ˆ̄r, ˆ̄v}|~θ)p(~θ)

. (9)
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The likelihood function, p({ˆ̄r, ˆ̄v}|~θ), is taken to be a Gaussian

ln p({ˆ̄r, ˆ̄v}|~θ) = −1

2

∑
f

∑
z


[
ˆ̄r(f, z)−mR(f, z; ~θ)

]2
σ2
r(f, z)

+

[
ˆ̄v(f, z)−mV (f, z; ~θ)

]2
σ2
v(f, z)

 .

(10)

We assume that the prior probability distribution, p(~θ), can be split into
the product of independent Gaussian prior probability distributions on each
individual parameter. We use Haney and Tsai (2015) to inform the Gaussian
prior probability distributions. The definition of our parameters differ slightly
from those in Haney and Tsai (2015), but we can generate prior information on
each parameter using some combination of information from that manuscript.
We also widen the uncertainty on those parameters enough to allow for sufficient
exploration of the parameter space, given that our situation is likely different
from the theoretical one considered in Haney and Tsai (2015).

2.3 Ambient Noise Cross Correlation and Velocity Model

We can also estimate what the eigenfunctions may be for a more realistic ve-
locity model, following methodology that is now relatively commonly used to
recover subsurface velocity estimates. This is intended to serve as a completely
independent check, and so we focus on ambient noise cross correlations rather
than the mine-blast data used above. Ambient noise cross-correlations are col-
lected between each station using one year’s worth of data, from June 2015 to
June 2016. Standard methods of time-domain normalization with a XX second
window and spectral whitening (i.e., Bensen et al., 2007) are used to reduce
nonstationary signals in the ambient noise. We note, however, that each of a
stations 3 components (vertical, N-S and E-W) are treated with an identical
time-domain and frequency-domain envelope derived from the average of the
3 components envelopes. In this way, even though a given station pair has
produced a noise correlation function for the North-North and East-East com-
ponents of motion, these can be safely rotated into the radial and transverse
components appropriate to the azimuth between those two stations (Lin et al.,
2008; Muir and Tsai, 2017).

Dispersion curves are estimated by passing narrow-bandpass filters over the
noise correlation functions, using the automated FTAN package (as described
by Levshin and Ritzwoller (2001)), for the frequency range of XX to XX Hz,
for fundamental group and phase velocities of both Rayleigh and Love waves
(figure XX). A starting velocity model is estimated using the relatively course
US-wide model of Schmandt et al. (2015) below 3km depth and the smoothly
varying very-hard rock profile of Boore and Joyner (1997). The computer pack-
age Computer Programs in Seismology (CPS) by Herrmann (2013) is used to
invert for a velocity model, using 12 iterations of estimating misfit between
predicted and observed dispersion curves and updating the 1D velocity model
accordingly. The resulting velocity model is undoubtedly less well resolved be-
low about 1km, but nevertheless this provides a reasonable estimate of seismic
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velocities in the region, and has been estimated using only techniques standard
in the literature.

This new 1D profile is then used to predict the corresponding eigenfunctions,
again using CPS. In fact, solving the eigenvalue problem to estimate sensitiv-
ity kernels was a necessary step for each of the 12 iterations of our inversion,
done internally in CPS, but we are primarily interested here in the final set of
eigenfunctions produced. These eigenfunctions compare well in the range etc.
compare and continue.

3 Results: Observations and Model Estimates

The results of the parameter estimation, along with the prior information on
each parameter, is summarized in Figures 5 and 6 and Table 1.

Figure 5 shows that the model fits the data reasonably well across all fre-
quencies used in the analysis. Figure 6 shows that there is very little difference
between the prior and posterior distributions, which implies that the measure-
ments generally agree with the theoretical predictions. expand this discussion

These measurements represent the first explicit estimate of the depth de-
pendence of the R-wave eigenfunctions using a three-dimensional seismometer
array.

Parameter Mean Error Prior Mean Prior Error

c2 -0.76 0.06 -0.8 0.1
a1 0.86 0.06 0.85 0.1
a2 0.63 0.06 0.7 0.1
c4 -0.69 0.07 -0.74 0.1
a3 0.49 0.06 0.7 0.4
a4 0.81 0.1 0.8 0.2
Nvh -0.68 0.02 -0.6 0.2

Table 1: values in table need to be updated Results for R-wave eigenfunction
parameter estimation. We show estimates and uncertainty for the parameters
from the 1-dimensional marginalized posterior distribution on each parameter.
We also show the mean and standard deviation of the Gaussian prior probability
distribution used for each parameter.

4 Conclusions

fix references for BSSA submission. (alphabetical by author citations are [Au-
thor, year])

9



−1

0

1

A
m

p
lit

u
d

e

f = 0.40 Hz f = 0.50 Hz f = 0.60 Hz

−1

0

1
f = 0.70 Hz f = 0.80 Hz f = 0.90 Hz

−1

0

1
f = 1.00 Hz f = 1.10 Hz f = 1.20 Hz

0 2000 4000
−1

0

1

0 2000 4000

Depths [m]
0 2000 4000

R recovery

Z recovery

ˆ̄h(f, z)

ˆ̄v(f, z)

Figure 5: Rayleigh-wave parameter estimation fits for all of the data used. The
red and green curves are examples of the bi-exponential models evaluated at
parameters whose values are generated with random draws from the posteriors
presented in Figure 6. The width of those lines is proportional to the range of
values at each depth one might expect the R-wave eigenfunction to take given
the parameter estimation we have performed and the model we have used. The
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