R-WAVE EIGENFUNCTION ANALYSIS [REDUX]

PAT MEYERS

EVENT SELECTION

- Use transient events from Gary/Ross with obvious R-wave regions
- Choose those "r-wave regions" by eye, and only use that data.

EVENTS

- 28 events
- Typically 50-80 s or so from each event
- If you want times and more info, let me know. I have a full table in my thesis...

ANALYSIS PARAMETERS

- Frequencies: 0.2, 0.3, 0.4 ..., 1.2 Hz
- FFT segment durations: 10 s
- Everything is done in the frequency domain using spectrograms
 - Initially, each pixel in spectrogram is a data point

f5,t1	f5,t2	f5,t3	f5,t4
f4,t1	f4,t2	f4,t3	f4,t4
f3,t1	f3,t2	f3,t3	f3,t4
f2,t1	f2,t2	f2,t3	f2,t4
f1,t1	f1,t2	f1,t3	f1,t4

ANALYSIS METHOD — NORMALIZATION

PHASE MEASUREMENTS

- For each pixel measure radial to vertical phase
 - Retrograde: assign (+) sign to radial measurement
 - Prograde: assign (-) sign to <u>radial measurement</u>
- All <u>vertical measurements</u> are negative
- This is to be consistent with convention in Haney/Tsai paper [0]

$$\phi = \arctan\left(\frac{\tilde{Z}(f)}{\tilde{R}(f)}\right)$$

[0] Haney, M. M., & Tsai, V. C. (2015). Nonperturbational surface-wave inversion: A Dix-type relation for surface waves. *Geophysics*, *80*(6), EN167–EN177. http://doi.org/10.1190/geo2014-0612.1

FINAL STEPS

- Remove data points with | normalized amplitude | > 1.5
- Take mean and standard deviation at each depth and each frequency
- For radial measurements this naturally reduces amplitude in cases Rwaves don't dominate
 - question: Should we also reduce Z-amplitude by similar factor (i.e. mean(ampR) / mean(| ampR |)
- Convert standard deviation -> standard deviation of the mean (divide by sqrt(N_points))

- Violin plots —
 Distribution of points at that depth and frequency
- Black bars are 68% intervals

BIEXPONENTIAL MODEL

- Sample over 9 parameters
- **C**₂, **a**₁, **a**₂, **C**₃, **a**₃, **a**₄, **N**_{vh}, **V**_{intercept}, **V**_{slope}
- Use all frequencies at once as data

$$r_H(f,z) = (e^{-2\pi a_1 f z/v} + c_2 e^{-2\pi a_2 f z/v}) \times \frac{1}{1+c_2}$$
$$r_Z(f,z) = (e^{-2\pi a_3 f z/v} + c_4 e^{-2\pi a_4 f z/v}) \times \frac{N_{vh}}{1+c_4}$$

BIEXPONENTIAL MODEL — A FEW EXPLANATIONS

- "v" on the bottom is from dispersion curve
 - Linear for right now (have also also tried power law)
 - Would like to add something different need something that probably levels off at low frequencies.
- "Nvh" is vertical-to-horizontal ratio at the surface

$$v(f) = v_{\text{intercept}} + f \times v_{\text{slope}}$$

LOG LIKELIHOOD

- Sum over frequency **and** depth now.
- (In the past we re-ran sampling for each frequency)

$$\ln p(\{\hat{h}, \hat{v}\} | \vec{\theta}) = -\frac{1}{2} \sum_{f} \sum_{z} \left(\frac{\left[\hat{h}(f, z) - r_H(f, z; \vec{\theta})\right]^2}{\sigma_H^2(f, z)} + \frac{\left[\hat{v}(f, z) - r_V(f, z; \vec{\theta})\right]^2}{\sigma_V^2(f, z)} \right)$$

PRIOR DISTRIBUTIONS

- Use Gaussian priors on each parameter informed by:
 - Victor's paper ("a" and "c")
 - our data ("Nvh")
 - other measurements (velocity dispersion)
- (actual values shown in results in a few slides)

FIT RESULTS

PRIOR/POSTERIOR COMPARISON

RESULTS

Parameter	Mean	Error	Prior Mean	Prior Error
c_2	-0.76	0.06	-0.8	0.1
c_4	0.86	0.06	0.85	0.1
a_1	0.63	0.06	0.7	0.1
a_2	-0.69	0.07	-0.74	0.1
a_3	0.49	0.06	0.7	0.4
a_4	0.81	0.1	0.8	0.2
N_{vh}	-0.68	0.02	-0.6	0.2
v_{slope}	-2500	200	-1700.0	500.0
$v_{\mathrm{intercept}}$	5330	340	4000.0	2000.0

SOME COMMENTS

- Making priors larger results in some bi-modal results
 - Not surprising (Daniel has seen something similar)
- Velocity dispersion curve makes sense
 - Would like to add a better one (maybe 3 parameters?)
- In the end, I think the MCMC is probably overkill
 - Unless there is a physical model associated with these parameters having specific values, I think from an empirical standpoint it's simpler to state that the space is very degenerate and what we quote are simply effective parameters (continued...)

SOME COMMENTS

- If people are interested in testing/including more models, I'd be happy to run the MCMC with that model
- I can also share the final data points if people are interested.

CONCLUSIONS — R-WAVE PE

- What do we want the focus of the paper to be?
 - Separate call?
- Do we let measurements speak for themselves and include a set of biexponential fit parameters?
- Would we like to look at some physical models? If so, which ones?
- I can start putting text into paper. Apologies for not doing that sooner.

EXTRAS

OTHER DATA METHODS:

- could use each data point when sampling
 - takes longer. errors would be from pre-event data. need to propagate error in normalization as well. becomes messy, but infrastructure currently exists.
- could add model for phase
 - estimate distribution of radial to vertical phase on surface
 - use this to generate a likelihood for R-wave phase at depth

REDOING THIS ANALYSIS WITH A POW

- Comparison of velocities powerlaw velocity dispersion used instead of linear
 - qualitative fits were similar for eigenfunctions; below are results from Daniel, Michael and myself for the different velocity measurements we've done.

APPLYING EIGENFUNCTION TO SEISMIC RADIOMETER

- ▶ We can apply this to the radiometer all maps **show propagation direction**
 - Microseism measurements from Michael/Jan [I used ~12 hours instead of full day to speed things up]
 - "Noisy day" consistent with R-waves
 - "Quiet day" mixed-wave content
 - ▶ 1.5 Hz source
 - **Future** average coherences for mine blasts from roughly same direction
- Using injections, I've found that amplitude recoveries can be suspect, but direction information (even for multiple injected sources) is generally reliable.
- I'm still checking the units. There's a chance I'm missing a (1/(2 * pi * f))^2 in all of these!

MICROSEISM (NOISY DAY)

Indicates wave propagating in westward direction

P/S/R -WAVES NOISY DAY $v_R=3.5 \text{ km/s}, v_P = 7 \text{ km/s}, v_S=5 \text{ km/s}$

P/S/R -WAVES QUIET DAY v_R =3.5 km/s, v_P = 7km/s, v_S =5km/s

NOISY DAY

QUIET DAY

1.5 HZ SOURCE - 2.8 km/s = 6 km/s = 3.5 km/s

 $v_R = 2.8 \text{ km/s}, v_P = 6 \text{ km/s}, v_S = 3.5 \text{ km/s}$

1.5 HZ SOURCE

CONCLUSIONS

- Hoping to run on a few more interesting frequencies
- Maybe convert these into NN measurements
- Try MCMC sampling, which could naturally give uncertainties.