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I. INTRODUCTION

Introduction to surface waves, long history, use

Discussion of lack of observations at depth. Even though borehole arrays exist, no clear

confirmation of expected surface-wave behavior as yet.

(The above 2 points should probably be somewhat substantial, e.g. > 1 page total)

Brief intro to accomplishments of the paper

II. METHODS

A. Observational Methods

try to make less mathematical. if needed move math to an appendix

do we want to include love-wave information?

We use transient seismic events to measure the surface-wave eigenfunctions. ([text from

Gary/Ross on how picking is done, direction/blast time is estimated. Maybe plot of transient

events]).

For each transient event, we rotate from East West/North South coordinates to radial and

transverse coordinates. We then plot the waveform and a frequency-time map of the phase

delay between the radial and vertical channels for each event for several surface stations. We

identify times and frequencies when the radial-to-vertical phase is consistent with retrograde

motion, which indicates that surface-waves are the dominant component of the seismic

field. We define the radial-to-vertical phase using the cross-correlation of radial and vertical

channels

φRV (f, t) = arctan

Im
(
R̃∗(f, t)× Ṽ (f, t)

)
Re
(
R̃∗(f, t)× Ṽ (f, t)

)
 . (1)

R̃(f, t) indicates the Fourier transform of the radial data at frequency f for the time segment

starting at time t. Ṽ (f, t) indicates the same for the vertical channel. The asterisk indicates

complex conjugation, while “Im” indicates the imaginary part of the cross-correlation and

“Re” indicates the real part. ([add figure with trace and ft-map? and/or location of mine

blasts used? or table of dates, etc.?]).

2



−110˚

−110˚

−108˚

−108˚

−106˚

−106˚

−104˚

−104˚

−102˚

−102˚

−100˚

−100˚

−98˚

−98˚

40˚ 40˚

42˚ 42˚

44˚ 44˚

46˚ 46˚

FIG. 1: fill me

We use 28 mine blasts observed by the Homestake seismometer array during July 2015.

We have used the above prescription to identify which parts of the waveforms are dominated

by surface waves. For each blast, we calculate as many discrete Fourier transforms of length

10 s as possible for each seismometer in the array. This leaves us with 0.1 Hz frequency

resolution, and we restrict our observations to the frequency band from 0.4 − 1.2 Hz for

both the radial and the vertical channels because this is the region of frequency space where

most of the surface-wave power appears to be concentrated for these blasts. We refer to the

radial data point at frequency, f , and time, t, in seismometer, i, located at depth, zi, as

R̃i(f, t; zi), and the corresponding vertical data point as Ṽi(f, t; zi).

We are attempting to observe Rayleigh waves and so we only consider the part of the

radial measurement that is consistent with retrograde motion. This means that we perform

a projection of our data onto the phase angle consistent with retrograde motion phrasing a
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FIG. 2: Left: The trace for the YATES surface station vertical and radial channels for an event

July 23rd, 2015. Right: The vertical-to-radial phase, φRZ , for the same YATES station over the

same time frame. We use 10 s discrete Fourier transforms. The colorbar is normalized such that

white indicates a phase of −π/2, which corresponds to retrograde motion. We see strong evidence

for retrograde motion between 70− 140 s and 0.2− 1.2 Hz. make ticks and labels larger.

bit awkward...

R̃i(f, t; zi) = −|R̃i(f, t; zi)| × Im eiφRV . (2)

In the above expression, vertical lines indicate modulus, and we use the minus sign to

impose the condition that measurements consistent with retrograde motion are positive,

while those consistent with prograde motion are negative. R̃i(f, t; zi) is now a real-valued

quantity.

We then normalize each data point by the average over radial surface station measure-

ments of the corresponding time and frequency. That is

r̂i(f, t; zi) =
R̃i(f, t; zi)

mean
[
{R̃j(f, t; 0) for j where zj = 0}

] (3)

v̂i(f, t; zi) =
|Ṽi(f, t; zi)|

mean
[
{R̃j(f, t; 0) for j where zj = 0}

] (4)

In the above expressions, j runs over all stations positioned on the surface, and the minus

sign on the vertical component is taken to be consistent with the convention in [2]. We

remove measurements where r̂i(f, t; zi) and v̂i(f, t; zi) are greater than 1.5, as values this

4



large indicate outliers whose amplitudes are much larger than the typical amplitude seen

across the surface stations. This removes 15% of the individual data pixels.

Finally, we take the mean and variance across all times at each depth and each frequency.

We indicate this with

ˆ̄r(f, z) =
1

Nt,z

∑
i for zi=z

∑
t

r̂i(f, zi; t) (5)

σ2
r(f, z) =

1

Nt,z

∑
i for zi=z

∑
t

(
r̂i(f, zi; t)− ˆ̄r(f, z)

)2
, (6)

where Nt,z indicates the total number of measurements across times and stations at depth

z.

In Figure 2 we show the distribution at 1 Hz of the ri(1, t; zi) and vi(1, t; zi) as a function

of depth with the violin plots, while the means, ˆ̄r(1; z) and ˆ̄v(1; z) are indicated with orange

points. The median across depths and times, as opposed to the mean, is shown in red. The

black bars indicate the 16th and 84th percentiles of the distributions shown in blue.

B. Markov Chain Monte Carlo Estimation of Model Parameters

(need to motivate bi-exponential model properly.) The plots in Figure 3 show a distinctive

shape that can be fit by a bi-exponential model. In [2] the authors construct a model for

the fundamental R-wave eigenfunction based on a power-law velocity depth profile for S-

waves. They fit a bi-exponential model to the R-wave eigenfunction for many different

theoretical power-law velocity depth profiles and Poisson ratios and calculate the mean and

standard deviation of the parameters in those fits. For this model, the parameters of the

bi-exponential model are independent of frequency, althought this need not necessarily be

trueadd a source for this statement?.

We use our measurements to estimate the parameters in the bi-exponential fits to the

radial and vertical data points. We use mR and mV to refer to the bi-exponential models for

the radial and vertical eigenfunctions, and these models depend on a set of intrinsic model

parameters, ~θ, the depth, z, and the frequency, f . We define the mR and mV as

mR(f, z; ~θ) =
(
e
−2πfz

a1
cR(f) + c2e

−2πfz
a2

cR(f)

)
× 1

1 + c2
(7)

mV (f, z; ~θ) =
(
e
−2πfz

a3
cR(f) + c4e

−2πfz
a4

cR(f)

)
× Nvh

1 + c4
. (8)
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FIG. 3: Top: ditribution of radial measurements shown by violin plot. Red and orange points

indicate the median and mean of the distribution respectively. Bottom: the same, except for the

vertical measurements.maybe move this plot to results section?

These functions can be compared to r1 and r1 in [2]. Below, we estimate the parameters in

the bi-exponential model,

~θ = (Nvh, c2, c4, a1, a2, a3, a4),

using the data, ˆ̄v(f, z) and ˆ̄r(f, z). The assumption that the c’s and the a’s do not change

with frequency is intrinsic to the theoretical model outlined in [2] and could, in principle,

be relaxed.

this paragraph may be better in previous section The phase velocity dispersion curve for

R-waves, cR(f), is estimated using ambient noise correlations. A plot of cR(f) is shown in

Figure 4.

We use the MultiNest package [1] to perform a Markov chain monte carlo (MCMC) anal-
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FIG. 4: Estimate of phase velocity as a function of frequency obtained from ambient noise correla-

tions at the 3D Homestake seismometer array. not sure how else to cite this...Daniel is it possible

to cite Daniel’s thesis? Feel free to add comments on updates to plot itself as needed.

ysis to estimate the parameters, ~θ. MultiNest is commonly used in the astrophysics commu-

nity, is designed to efficiently sample multimodal distributions and large parameter spaces,

and offers robust Bayesian evidence estimates. The posterior probability distribution we use

MultiNest to explore is given by

p(~θ|{ˆ̄r, ˆ̄v}) =
p({ˆ̄r, ˆ̄v}|~θ)p(~θ)∫
d~θ p({ˆ̄r, ˆ̄v}|~θ)p(~θ)

. (9)

The likelihood function, p({ˆ̄r, ˆ̄v}|~θ), is taken to be a Gaussian

ln p({ˆ̄r, ˆ̄v}|~θ) = −1

2

∑
f

∑
z


[
ˆ̄r(f, z)−mR(f, z; ~θ)

]2
σ2
r(f, z)

+

[
ˆ̄v(f, z)−mV (f, z; ~θ)

]2
σ2
v(f, z)

 . (10)

We assume that the prior probability distribution, p(~θ), can be split into the product

of independent Gaussian prior probability distributions on each individual parameter. We

use [2] to inform the Gaussian prior probability distributions. The definition of our pa-

rameters differ slightly from those in [2], but we can generate prior information on each

parameter using some combination of information from that manuscript. We also widen the

uncertainty on those parameters enough to allow for sufficient exploration of the parameter

space, given that our situation is likely different from the theoretical one considered in [2].

7



III. RESULTS: OBSERVATIONS AND MODEL ESTIMATES

The results of the parameter estimation, along with the prior information on each pa-

rameter, is summarized in Figures 5 and 6 and Table I.

Figure 5 shows that the model fits the data reasonably well across all frequencies used in

the analysis. Figure 6 shows that there is very little difference between the prior and posterior

distributions, which implies that the measurements generally agree with the theoretical

predictions. expand this discussion

These measurements represent the first explicit estimate of the depth dependence of the

R-wave eigenfunctions using a three-dimensional seismometer array.

Parameter Mean Error Prior Mean Prior Error

c2 -0.76 0.06 -0.8 0.1

a1 0.86 0.06 0.85 0.1

a2 0.63 0.06 0.7 0.1

c4 -0.69 0.07 -0.74 0.1

a3 0.49 0.06 0.7 0.4

a4 0.81 0.1 0.8 0.2

Nvh -0.68 0.02 -0.6 0.2

TABLE I: values in table need to be updated Results for R-wave eigenfunction parameter estima-

tion. We show estimates and uncertainty for the parameters from the 1-dimensional marginalized

posterior distribution on each parameter. We also show the mean and standard deviation of the

Gaussian prior probability distribution used for each parameter.

IV. CONCLUSIONS

References
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FIG. 5: Rayleigh-wave parameter estimation fits for all of the data used. The red and green curves

are examples of the bi-exponential models evaluated at parameters whose values are generated with

random draws from the posteriors presented in Figure 6. The width of those lines is proportional

to the range of values at each depth one might expect the R-wave eigenfunction to take given the

parameter estimation we have performed and the model we have used. The orange points are the

data supplied to the sampler. That is, the orange points correspond to ˆ̄r(f, z) and the blue points

correspond to ˆ̄v(f, z).
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