# Results of Geochemical Data Analysis of Homestake Elastic Wave Speeds Levi Walls 24 Feb. 2016

## Assumptions:

- Data is assumption-free; e.g. :
  - $\circ$  Temperature does not affect mineral data;
  - $\circ$  Pressure does not affect mineral data;
  - $\circ$  Does not consider porosity of rock;
  - $\circ$  Does not consider fracturing of rock, etc.
- Results are from a purely mineralogical dependence

# Methodology

- Main assumption: elastic wave speeds through materials is an additive quantity Using the geochemical data [1] in addition to wave speeds through the pertinent minerals [2] :
- Estimate hardness  $(\overline{H}_M)$  of each site using a normalized weighted average; i.e.

$$\bar{V}_M = \sum_{i \in S} w_i (V_M)_i \tag{1}$$

where S spans the sample space consisting of the pertinent minerals in each table,  $w_i$  is the percent mineral composition, and  $(V_M)_i$  is the wave speed of each constituent mineral [2]

#### Wave Speed Model Based on Mineral Hardness



Fig. 1: There were several minerals for which I did not have wave speeds.

Models are based on the hardness of minerals, values which I do have.

It was narrowed down to a power model (shown) or linear—Linear might have been more realistic at lower *H* values, but it does not really matter in the domain of interest.

#### **Results: Poorman Formation**

| Table 1   |                     |             |                     |             |                              |  |  |  |
|-----------|---------------------|-------------|---------------------|-------------|------------------------------|--|--|--|
| Rock Type | P-Wave Speed (km/s) | Error (+/-) | S-Wave Speed (km/s) | Error (+/-) | Location                     |  |  |  |
| HPS       | 6.780               | 0.168       | 3.710               | 0.167       | 3800 level, Yates Shaft area |  |  |  |
| HPS       | 6.714               | 0.157       | 3.680               | 0.156       | 4100 level, Yates Shaft area |  |  |  |
| HPS       | 6.692               | 0.155       | 3.684               | 0.153       | 4850 level, Yates Shaft area |  |  |  |
| CS        | 5.741               | 0.080       | 3.186               | 0.092       | 7700 level, No. 6 Winze      |  |  |  |
| HBCS      | 6.174               | 0.114       | 3.261               | 0.187       | 4100 level, Yates Shaft area |  |  |  |
| GQSP      | 6.014               | 0.104       | 3.774               | 0.084       | 8000 level, 21 Ledge         |  |  |  |
| GQSP      | 5.416               | 0.142       | 3.272               | 0.103       | 8000 level, 19 Ledge         |  |  |  |
| GQSP      | 5.549               | 0.141       | 3.055               | 0.126       | 4850 level, 15 Ledge         |  |  |  |
| SCQP      | 5.646               | 0.153       | 3.365               | 0.127       | 4100 level, Ross Shaft area  |  |  |  |
| SCQP      | 5.621               | 0.228       | 3.281               | 0.174       | 4850 level, 4 Winze area     |  |  |  |
| SCQP      | 5.550               | 0.172       | 3.267               | 0.135       | 6800 level, near Main Ledge  |  |  |  |
| BQCP      | 5.354               | 0.108       | 3.013               | 0.235       | 4850 level, 15 Ledge         |  |  |  |
| BQCP      | 5.177               | 0.109       | 2.846               | 0.232       | 7700 level, 6 Shaft area     |  |  |  |

#### Results: Homestake Formation

| Table 2   |                     |             |                     |             |                                           |  |  |  |
|-----------|---------------------|-------------|---------------------|-------------|-------------------------------------------|--|--|--|
| Rock Type | P-Wave Speed (km/s) | Error (+/-) | S-Wave Speed (km/s) | Error (+/-) | Location                                  |  |  |  |
| GDS       | 6.090               | 0.120       | 3.342               | 0.174       | 4550 level, Main Ledge                    |  |  |  |
| GDS       | 6.336               | 0.113       | 3.761               | 0.114       | 4550 level, 9 Ledge                       |  |  |  |
| GDS       | 6.572               | 0.156       | 3.745               | 0.157       | 6800 level, 21 Ledge                      |  |  |  |
| GDS       | 5.681               | 0.108       | 3.130               | 0.118       | 6800 level, 21 Ledge                      |  |  |  |
| GDS (ore) | 7.163               | 0.113       | 4.044               | 0.099       | 7200 level, 9 Ledge                       |  |  |  |
| GDS       | 6.645               | 0.150       | 3.764               | 0.153       | 8300 level, Pierce Structure (Main Ledge) |  |  |  |
| SDP (ore) | 6.401               | 0.144       | 3.433               | 0.145       | 800 level, 7 Ledge                        |  |  |  |
| SDP       | 6.330               | 0.122       | 3.483               | 0.127       | 1700 level, 7 Ledge                       |  |  |  |
| SDP (ore) | 5.613               | 0.115       | 3.011               | 0.115       | 6650 level, 9 Ledge                       |  |  |  |
| SDP       | 6.149               | 0.125       | 3.375               | 0.125       | 5750 level, 17 Ledge                      |  |  |  |
| SDP       | 5.874               | 0.096       | 3.332               | 0.096       | 5900 level, 17 Ledge                      |  |  |  |
| SDP (ore) | 5.809               | 0.095       | 3.300               | 0.096       | 6800 level, 21 Ledge                      |  |  |  |
| CQS       | 5.755               | 0.075       | 3.350               | 0.086       | 800 level, 7 Ledge                        |  |  |  |
| CQS       | 5.087               | 0.125       | 2.886               | 0.125       | 5600 level, 11 Ledge                      |  |  |  |
| CQS       | 5.678               | 0.100       | 3.210               | 0.100       | 6950 level, 21 Ledge                      |  |  |  |

#### **Results: Ellison Formation**

| Table 3     |                     |             |                     |             |                                   |  |  |  |
|-------------|---------------------|-------------|---------------------|-------------|-----------------------------------|--|--|--|
| Rock Type   | P-Wave Speed (km/s) | Error (+/-) | S-Wave Speed (km/s) | Error (+/-) | Location                          |  |  |  |
| Quartzite   | 5.813               | 0.061       | 3.799               | 0.053       | 4550 level, 11 Ledge              |  |  |  |
| Quartzite   | 5.942               | 0.064       | 3.982               | 0.056       | 6500 level, Main Ledge            |  |  |  |
| Quartzite   | 5.916               | 0.065       | 3.935               | 0.054       | 6800 level, 9 Ledge               |  |  |  |
| QMS         | 5.798               | 0.090       | 3.568               | 0.105       | 5900 level, 13 Ledge              |  |  |  |
| SQP         | 5.746               | 0.313       | 3.435               | 0.231       | 2600 level, east of Yates Shaft   |  |  |  |
| SQP         | 5.522               | 0.244       | 3.225               | 0.196       | 6800 level, Main Ledge            |  |  |  |
| SQP         | 5.430               | 0.338       | 3.086               | 0.256       | 6800 level, 13 Ledge              |  |  |  |
| SQP         | 5.643               | 0.180       | 3.423               | 0.139       | 6800 level, 15 Ledge              |  |  |  |
| BQP         | 5.502               | 0.101       | 3.204               | 0.193       | 2600 level, east of Yates Shaft   |  |  |  |
| BQP         | 5.386               | 0.093       | 3.062               | 0.144       | 6500 level, Main Ledge            |  |  |  |
| BQP         | 5.922               | 0.093       | 3.413               | 0.190       | 6800 level, 9 Ledge               |  |  |  |
| Amphibolite | 6.683               | 0.150       | 3.635               | 0.150       | Drill hole north of Lead, S. Dak. |  |  |  |



#### Fig. 2:

Plot of P- and S-wave velocities with respect to depth (and no other spatial coordinate).

Plotting over depth only introduces data points of different wave speed occurring at the same depth.

Thus, for such data points, I found the average wave speed and plotted it with the single data points as a solid line.

# Future

- Compare with Gary and student's measurements of 2000 S-wave speeds.
  - Used in conjunction, we could determine the effects of fracturing and others of seismological importance have on the Homestake environment.
- Compare with work of Victor and Daniel
  - Maybe find a velocity model specific to Homestake
  - Determine ray paths of seismic wave

### Appendix: Mineralogical Wave Speeds

| Mineral                      | Hardness (on Mohs scale) | Error (+/-) | P-wave velocity (km/s) | Error (+/-) | Trend_Power | S-wave velocity (km/s) | Error (+/-) | Trend_Power | Table 4.                 |
|------------------------------|--------------------------|-------------|------------------------|-------------|-------------|------------------------|-------------|-------------|--------------------------|
| Quartz                       | 7.00                     | -           | 5.942                  | 0.064       | 7.689       | 3.982                  | 0.056       | 4.412       | Ways an edg for          |
| Hornblende                   | 5.50                     | 0.50        | 6.810                  | 0.198       | 6.843       | 3.720                  | 0.198       | 3.883       | wave speeds for          |
| Biotite                      | 2.75                     | 0.25        | 5.074                  | 0.187       | 4.893       | 2.453                  | 0.417       | 2.690       | different rock-          |
| Sericite/Muscovite           | 2.75                     | 0.25        | 5.450                  | 0.481       | 4.893       | 3.080                  | 0.354       | 2.690       | composing minerals of    |
| *Mg-chlorite aka Clinochlore | 2.25                     | 0.25        | 4.440                  | 0.198       | 4.440       | 2.419                  | 0.198       | 2.419       |                          |
| °Intermediate Plagioclase    | 6.25                     | 0.25        | 6.438                  | 0.216       | 7.279       | 3.473                  | 0.181       | 4.155       | Homestake.               |
| Rutile                       | 6.25                     | 0.25        | 9.357                  | 0.274       | 7.279       | 4.653                  | 0.474       | 4.155       |                          |
| Graphite                     | 1.50                     | 0.50        | 3.060                  | 0.198       | 3.649       | 1.860                  | 0.198       | 1.952       | Note: The values in red  |
| Siderite                     | 4.25                     | 0.25        | 6.930                  | 0.198       | 6.040       | 3.580                  | 0.198       | 3.388       |                          |
| Ankerite                     | 3.75                     | 0.25        | 5.685                  | 0.198       | 5.685       | 3.170                  | 0.198       | 3.170       | have come from use of    |
| Calcite                      | 3.00                     | -           | 6.347                  | 0.211       | 5.103       | 3.227                  | 0.089       | 2.817       | wave speed model         |
| Pyrrhotite                   | 4.00                     | 0.50        | 4.690                  | 0.198       | 5.866       | 2.760                  | 0.198       | 3.281       | hased on hardness of     |
| Pyrite                       | 6.25                     | 0.25        | 7.812                  | 0.152       | 7.279       | 5.032                  | 0.071       | 4.155       |                          |
| *Grunerite                   | 5.50                     | 0.50        | 6.843                  | 0.198       | 6.843       | 3.883                  | 0.198       | 3.883       | each mineral (cf. Slides |
| °Na-amphibole                | 5.50                     | 0.50        | 6.843                  | 0.198       | 6.843       | 3.615                  | 0.198       | 3.883       | 4 and 11).               |
| *Fe-chlorite aka Chamosite   | 2.25                     | 0.25        | 4.440                  | 0.198       | 4.440       | 2.419                  | 0.198       | 2.419       |                          |
| *Garnet                      | 7.00                     | 0.50        | 8.415                  | 0.194       | 7.689       | 4.776                  | 0.131       | 4.412       |                          |
| Albite                       | 6.25                     | 0.25        | 6.070                  | 0.198       | 7.279       | 3.940                  | 0.198       | 4.155       |                          |
| Arsenopyrite                 | 5.75                     | 0.25        | 6.991                  | 0.198       | 6.991       | 3.976                  | 0.198       | 3.976       |                          |
| Epidote/Clinozoisite         | 6.25                     | 0.25        | 7.430                  | 0.198       | 7.279       | 4.240                  | 0.198       | 4.155       |                          |
| Magnetite                    | 6.00                     | 0.5         | 7.385                  | 0.007       | 7.137       | 4.195                  | 0.007       | 4.066       |                          |

#### **Error Calculation**

- Errors were not given in [2]
- For sample spaces with  $\geq 2$  minerals [2]:

The error was calculated as the standard deviation of the wave speeds for that particular mineral

• For sample spaces with 1 mineral [2]:

The error was calculated to be the average of the errors calculated above.

#### Resources

 [1] Caddey, S., & Geological Survey. (1992). The Homestake Gold Mine : An Early Proterozoic Iron-formation-hosted Gold Deposit, Lawrence County, South Dakota. Print.

[2] Mineralogical wave speed data retrieved from: <u>http://petrowiki.org/Isotropic\_elastic\_properties\_of\_minerals</u>