Radiometer characterization (and other things)

Pat Meyers November 17th, 2017

Idea for verifying radiometer

- Find a time or a frequency or something where we *know* there are Rwaves
- Run the radiometer r-wave code on that time

Possible examples

1. After an EQ

- 2. After a mine-blast
- 3. Some persistent source
- 4. Microseism

Persistent source example

- <u>Top</u>: Phase difference between vertical and east channel
- <u>Bottom:</u> Histogram over time segments
- NOTE: This source isn't really seen in the North channel at all

Frequency [Hz]

This source turns on and off?

- Band-pass filter from 1.4 - 1.6 Hz, look at time series
- See it turn off at 00:00 - 00:30 and 12:00 - 12:30 UTC *every day* for some reason

patrick meyers

Can we recover this source when it's on?

Does the size of the recovery make sense?

- All recoveries done using Daniel's velocity estimates for r-waves
- 2x10⁻¹⁷ (in power) -> 4.4x10⁻⁹ in amplitude.
 - That's about right if you look at time series from two slides ago.

Other notes about this study

- The source isn't seen in all channels
 - not seen in DEAD, SHL, and some of the stations at depth.
 - Adding stations at depth does not help radiometer recovery (potentially due to mismatch in eigenfunction?)
- It's unclear to me whether this source is local or distant. See next slide

Verifying this recovery

- Radiometer has two aspects to its recovery if we just use surface stations:
 - Timing information
 - Polarization information (i.e. longudinal + vertical for Rayleigh waves)
- We can asses polarization information by using single stations in the radiometer recovery (see slide 6 top left for example).

 We can asses timing information using a separate analysis that *just* uses timing on the same data.
patrick meyers

Time delay between separated channels

- Plot phase between stations vs. projected distance in eastern direction. The slope is 1 / (v\sin\theta)
- $v \in x = 3396.22 pm 429.55 m/s$
- So…we can also figure out what the direction is this way if we assume we know the velocity a priori!
- Used YATES, ROSS, ORO, TPK, 800, 300 for analysis.

patrick meyers

Time delay direction measurement

patrick meyers

• This is not *directly* comparable to radiometer yet (it only uses East channels, for example)...but it's getting there.

Extras – fix intercept

• Fit while fixing that phase is zero at zero distance:

Extras - recovery comparison

Recovery Comparison 90°

patrick meyers

14