Green's Functions for Surface Waves

Victor C. Tsai Seismological Laboratory **California Institute of Technology**

October 24th, 2015

UMN Collaboration Meeting

Derivation on Blackboard

- Equation of motion + elastic constitutive eq.
- For plane wave propagation in x, depth z
- SH system (y disp.) and P-SV system (x-z disp.)
- Can derive eigenfunction equations and phase velocities (eigenvalues)

Surface Waves

• Surface wave Green's functions can be written as

• So let's determine l_1 , r_1 , r_2

Eigenfunction Equations

• Assuming $\mu(z)$ and $\lambda(z)$ then:

• Love:
$$-\rho\omega^2 l_1 = -\mu(z)k^2 l_1 + \frac{\partial}{\partial z} \left[\mu(z)\frac{\partial l_1}{\partial z} \right]$$

• Rayleigh:

$$-\rho\omega^{2}r_{1} = -\lambda k^{2}r_{1} - \lambda k\frac{\partial r_{2}}{\partial z} - 2\mu k^{2}r_{1} - k\frac{\partial}{\partial z}\left[\mu r_{2}\right] + \frac{\partial}{\partial z}\left[\mu\frac{\partial r_{1}}{\partial z}\right]$$
$$-\rho\omega^{2}r_{2} = k\frac{\partial}{\partial z}\left[\lambda r_{1}\right] + \frac{\partial}{\partial z}\left[\lambda\frac{\partial r_{2}}{\partial z}\right] + \mu k\frac{\partial r_{1}}{\partial z} - \mu k^{2}r_{2} + \frac{\partial}{\partial z}\left[2\mu\frac{\partial r_{2}}{\partial z}\right]$$

Homogeneous Halfspace

- Eigenfunctions are simple, analytic
- Love waves do not exist
- Rayleigh waves:

$$r_1 = e^{-0.8475kz} - 0.5773e^{-0.3933kz}$$
$$r_2 = 0.8475e^{-0.8475kz} - 1.4679e^{-0.3933kz}$$

• Implies: $\frac{H}{V} \approx \frac{1 - .5773}{1.4679 - .8475} \approx 0.68$

Q: Is H/V~0.7 realistic? Often no...

Near-Surface Green's Functions

Near-surface velocity structure is often decently approximated by a power-law function of depth

 $\beta \approx \beta_0 \left(\frac{z}{z_0}\right)$

Near-Surface Green's Functions

- Let's try to evaluate the near-surface Green's function in this case of a power-law structure $\beta \approx \beta_0 (z/z_0)^{\alpha}$
- Surface-wave Green's function can be written as

Need to determine eigenfunctions and c(ω)...

Eigenfunctions also determined for Love waves

Phase Velocity Coeff. for Rayleigh and Love Waves

Scaled phase velocity vs. power-law exponent $\boldsymbol{\alpha}$

Amplitude Coeff. for Rayleigh and Love Waves

Scaled amplitudes vs. power-law exponent α

Long-Term Project Goals

- Use 3D array geometry to...
- Determine if noise correlations can be improved due to better noise (including coda time lapse)
- Determine if teleseismic earthquake analysis can be improved due to better noise
- Understand how wavefield changes with depth. How much scattering, etc?
 - Expectation that complexity decreases with depth
 - Use both noise/eqs to study the complexity