
Love Wave Formalism

Levi Walls

July 11, 2016

0.0.1 Theory and Eigenfunction Approximation

Following the standard theory in seismology (Aki and Richards, 2009), Love
waves–horizontally-polarized shear waves often noted as SH-waves–do not
exist in a homogeneous halfspace, so let us consider these waves in an
isotropic and vertically heterogeneous halfspace with corresponding elastic
moduli that are smoothly-varying with depth. Then, assuming a plane-wave
solution as above and appropriate boundary conditions (namely l1 → 0 for
suffiently large z and µ(z)dl1dz = 0 at the free surface), the equation of motion
takes the form:

− ω2ρ(z)l1 =
d

dz

[
µ(z)

dl1
dz

]
− k2µ(z)l1, (1)

where l1, most-generally, is the eigenfunction that captures the displacement
field’s dependence on depth, frequency, and wavenumber; i.e. l1 = l1(z, ω, k).
Equation 1 has dependence on the shear modulus, µ(z), and density, ρ(z), of
the medium; this must be accounted for by using an appropriate shear-wave
velocity profile. By definition, the shear-wave velocity is:

β(z) =

√
µ(z)

ρ(z)
. (2)

Assuming density is constant with depth, i.e. ρ(z) = ρ0, we consider those
profiles modelled by a power-law: β(z) ∼ z−α. Furthermore, Haney and
Tsai (2015) suggests an approximate eigenfunction solution for fundamental-
mode Love waves: l1 ∼ e−akz. In keeping consistent with the rest of the note,
the eigenfunction in Haney and Tsai (2015) would be: l1 = l1(z, ω, k) ∼
l1(z, f, vl) = e

−2πa fz
vl if k = ω/vl and ω = 2π/f . Note its dependence

on Love wave velocity, vl; this value is usually obtained experimentally.
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Because a depends on α, a scan through different values of shear-wave power-
law index, α ∈

[
0.250 0.275 0.300 0.325 0.350 0.375 0.400

]
, yields

a = 0.85± 0.09.

0.0.2 Recovery Method

Consider a single Love wave propagating in the Ω̂ direction with particle
displacement perpendicular and horizontally polarized with repsect to the
line of propagation. We begin with the displacement field modified from
Lay and Wallace (1995), Aki and Richards (2009):

~l(~x, t) = l1 cos(~k · ~x− ωt) ~eH(Ω̂), (3)

where the naming conventions follow that of shear waves presented ear-
lier, i.e. here A = H to signify the horizontal polarization of the wave.
For the sake of argument, we assume the fundamental-mode of Love waves
contributes more significantly than other modes, which leads to a frequency-

dependent eigenfunction solution: l1(z, f, vl) = e
−2πa fz

vl as in 0.0.1. This is
done to illustrate the attenuation of these waves as one goes further under-
ground. Furthermore, the plane-wave expansion of this displacement field
is:

~l(~x, t) =

∫
df dΩ̂ e

−2πa fz
vl L(f, Ω̂) ~eH(Ω̂) e

2πif
(
t− Ω̂·~x

vl

)
. (4)

Then, the two-point correlation is:

〈L∗(f, Ω̂) L
′
(f ′, Ω̂′)〉 = δ(f − f ′) δ2(Ω̂, Ω̂′) HL(f, Ω̂), (5)

and the measurement in channel α of seismometer i would be:

di,α(~x, t) = ~l(~x, t) · α̂, (6)

where α can be (x, y, or z), allows us to compute the cross-correlation Y
(between channel α of seismometer i and channel β of seismometer j):

〈Yiα,jβ〉 = 2T∆f

∫
dΩ̂ e−2πaf(zi+zj)/vlHL(Ω̂) eH,α(Ω̂) eH,β(Ω̂) e2πifΩ̂·∆~x/vl ,

(7)
where the frequency dependence in Eq. 4 was ignored as in the preceding
analysis and eH,α(Ω̂) = ~eH(Ω̂) · α̂. Expanding the spatial function in some
basis, e.g. pixels or spherical harmonics:

HL(Ω̂) =
∑
a

La Qa(Ω̂), (8)
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allows us to write the γ-functions:

γLa =

∫
dΩ̂ Qa(Ω̂) eH,α(Ω̂) eH,β(Ω̂) e2πifΩ̂·∆~x/vl , (9)

which, finally, enables us to write the cross-correlation as a sum over these
new γ-functions:

〈Yiα,jβ〉 = 2T∆f e−2πaf(zi+zj)/vl La γLa. (10)
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