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1 Introduction

We develop a formalism for estimating the modal content of a seismic wave
field, using a limited number of seismic measurements.

2 Body Waves

2.1 Formalism

Let us start with the shear and pressure wave fields, ~s(~x, t) and ~p(~x, t) (others
can be added as well). The plane wave expansions of these are:

~s(~x, t) =
∑
A

∫
dfdΩ̂ SA(f, Ω̂) ~eA(Ω̂) e2πif(t−Ω̂·~x/vs) (1)

~p(~x, t) =

∫
dfdΩ̂ P (f, Ω̂) Ω̂ e2πif(t−Ω̂·~x/vp) (2)

Here, Ω̂ denotes the wave propagation direction, f is frequency, SA(f, Ω̂) is
the amplitude of the shear wave of polarization A, defined by the unit vector
~eA(Ω̂) that is perpendicular to the wave propagation direction Ω̂), P (f, Ω̂)
is the amplitude of the pressure wave which has a single polarization in the
longitudinal direction (Ω̂), and vs and vp are the speeds of the shear and
pressure waves respectively. We can then define two-point correlations:

〈S∗A(f, Ω̂) SA′(f
′, Ω̂′)〉 = δAA′ δ(f − f ′) δ2(Ω̂, Ω̂′) HS,A(f, Ω̂) (3)

〈P ∗(f, Ω̂) P (f ′, Ω̂′)〉 = δ(f − f ′) δ2(Ω̂, Ω̂′) HP (f, Ω̂) (4)

〈S∗A(f, Ω̂) P (f ′, Ω̂′)〉 = 0 (5)
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Here, δ’s denote the Kronecker or Dirac delta functions, and H’s denote
the power in the shear waves of polarization A or in pressure waves. These
assumed two-point correlations essentially state that waves at different fre-
quencies, from different directions, and of different polarization (shear or
pressure) are all uncorrelated.

Seismometer i at a location ~x then measures in channel α̂:

di,α(~x, t) = (~s(~x, t) + ~p(~x, t)) · α̂ (6)

where α could be x,y, or z. In principle we should add the seismometer
noise to this measurement, but we will assume that the seismic noise floor
is significantly higher than the instrument noise. Now we can compute the
cross-correlation between channels of two seismometers located at different
locations (we denote the channels by α and β, they take values x, y, z and in
general need not be the same):

〈Yiα,jβ〉 =

∫ T/2

−T/2
dt diα(~xi, t)djβ(~xj, t) (7)

=

∫ T/2

−T/2
dt

∫
dfdΩ̂

(∑
A

HS,A(f, Ω̂)eA,α(Ω̂)eA,β(Ω̂)e2πifΩ̂·∆~x/vs

+ HP (f, Ω̂)ΩαΩβe
2πifΩ̂·∆~x/vp

)
(8)

where we have defined projections eA,α(Ω̂) = ~eA(Ω̂) · α̂ and Ωα = Ω̂ · α̂, and
∆~x = ~xi−~xj. The time integral is trivial. Also, we can perform the analysis
in a small frequency bin ∆f so that the frequency integral is also simple (we
add a factor of 2 when switching to integration over frequencies between 0
and +∞):

〈Yiα,jβ〉 = 2T∆f

∫
dΩ̂

(∑
A

HS,A(Ω̂)eA,α(Ω̂)eA,β(Ω̂)e2πifΩ̂·∆~x/vs

+ HP (Ω̂)ΩαΩβe
2πifΩ̂·∆~x/vp

)
(9)

where we have suppressed the frequency dependence of the shear and pressure
wave amplitudes. We can then parameterize the amplitudes in terms of
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whatever basis {Qa(Ω̂)} would be most useful:

HS,A(Ω̂) =
∑
a

SA,a Qa(Ω̂) (10)

HP (Ω̂) =
∑
a

Pa Qa(Ω̂) (11)

One useful basis may be the spherical harmonics, Qlm(Ω̂) = Ylm(Ω̂). Another
basis choice could be ”pixels”, i.e. specific propagation directions QΩ̂0

(Ω̂) =

δ(Ω̂− Ω̂0). Either way, we can define

γS1a =

∫
dΩ̂ Qa(Ω̂)e1,α(Ω̂)e1,β(Ω̂)e2πifΩ̂·∆~x/vs

γS2a =

∫
dΩ̂ Qa(Ω̂)e2,α(Ω̂)e2,β(Ω̂)e2πifΩ̂·∆~x/vs

γPa =

∫
dΩ̂ Qa(Ω̂)ΩαΩβe

2πifΩ̂·∆~x/vp (12)

Note we suppressed the indices ijαβ. We can then write

〈Yiα,jβ〉 = 2T∆f(S1aγS1a + S2bγS2b + PcγPc)

= Sdγd (13)

where the repeated indices are summer over (and the sum over the index d
in the last line includes all 3 sums in the previous line). The goal of the
analysis is to estimate the coefficients S1a, S2b, Pc (or, equivalently, Sd). We
define the likelihood as

L ∝ exp

(
− (Y ∗i − γ∗idSd)N−1(Yi − γidSd)

)
(14)

where i now runs over all detector/channel pairs, and d runs over all basis
elements. The covariance matrix N in our case is simple - we can assume
that all detectors and channels have similar noise floors, constant in time, so
N then becomes proportional to the identity matrix and we can ignore it in
likelihood maximization. The best estimate is then given by

~S = (γT∗γ)−1γ∗~Y (15)

where in the last line we think of γ as a matrix of elements γid. So the
problem reduces to computing the γ matrix, which can be done once the
basis is chosen using Eq. 12. Note that it is straightforward to add other
components of the seismic wave field.
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3 Surface Waves

3.1 Love Waves

Following the standard theory in seismology (Aki and Richards, 2009), Love
waves–horizontally-polarized shear waves often noted as SH-waves–do not
exist in a homogeneous halfspace, so let us consider these waves in an isotropic
and vertically heterogeneous halfspace with corresponding elastic moduli that
are smoothly-varying with depth. Then, assuming a plane-wave solution as
above and appropriate boundary conditions (namely l1 → 0 for suffiently
large z and µ(z)dl1

dz
= 0 at the free surface), the equation of motion takes the

form:

− ω2ρ(z)l1 =
d

dz

[
µ(z)

dl1
dz

]
− k2µ(z)l1, (16)

where l1, most-generally, is the eigenfunction that captures the displacement
field’s dependence on depth, frequency, and wavenumber; i.e. l1 = l1(z, ω, k).
Equation 16 has dependence on the shear modulus, µ(z), and density, ρ(z), of
the medium; this must be accounted for by using an appropriate shear-wave
velocity profile. By definition, the shear-wave velocity is:

β(z) =

√
µ(z)

ρ(z)
. (17)

Assuming density is constant with depth, i.e. ρ(z) = ρ0, we consider those
profiles modelled by a power-law: β(z) ∼ z−α. Furthermore, Haney and Tsai
(2015) suggests an approximate eigenfunction solution for fundamental-mode
Love waves: l1 ∼ e−akz. In keeping consistent with the rest of the note,
the eigenfunction in Haney and Tsai (2015) would be: l1 = l1(z, ω, k) ∼
l1(z, f, vl) = e

−2πa fz
vl if k = ω/vl and ω = 2π/f . Note its dependence on Love

wave velocity, vl; this value is usually obtained experimentally. Because
a depends on α, a scan through different values of shear-wave power-law
index, α ∈

[
0.250 0.275 0.300 0.325 0.350 0.375 0.400

]
, yields a =

0.85± 0.09.

3.1.1 Formalism

Consider a single Love wave propagating in the Ω̂ direction with particle
displacement perpendicular and horizontally polarized with repsect to the
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line of propagation. We begin with the displacement field modified from Lay
and Wallace (1995), Aki and Richards (2009):

~l(~x, t) = l1 cos(~k · ~x− ωt) ~eH(Ω̂), (18)

where the naming conventions follow that of shear waves presented earlier, i.e.
here A = H to signify the horizontal polarization of the wave. For the sake
of argument, we assume the fundamental-mode of Love waves contributes
more significantly than other modes, which leads to a frequency-dependent

eigenfunction solution: l1(z, f, vl) = e
−2πa fz

vl as in 3.1. This is done to
illustrate the attenuation of these waves as one goes further underground.
Furthermore, the plane-wave expansion of this displacement field is:

~l(~x, t) =

∫
df dΩ̂ e

−2πa fz
vl L(f, Ω̂) ~eH(Ω̂) e

2πif
(
t− Ω̂·~x

vl

)
. (19)

Then, the two-point correlation is:

〈L∗(f, Ω̂) L
′
(f ′, Ω̂′)〉 = δ(f − f ′) δ2(Ω̂, Ω̂′) HL(f, Ω̂), (20)

and the measurement in channel α of seismometer i would be:

di,α(~x, t) = ~l(~x, t) · α̂, (21)

where α can be (x, y, or z), allows us to compute the cross-correlation Y
(between channel α of seismometer i and channel β of seismometer j):

〈Yiα,jβ〉 = 2T∆f

∫
dΩ̂ e−2πaf(zi+zj)/vlHL(Ω̂) eH,α(Ω̂) eH,β(Ω̂) e2πifΩ̂·∆~x/vl ,

(22)
where the frequency dependence in Eq. 19 was ignored as in the preceding
analysis and eH,α(Ω̂) = ~eH(Ω̂) · α̂. Expanding the spatial function in some
basis, e.g. pixels or spherical harmonics:

HL(Ω̂) =
∑
a

La Qa(Ω̂), (23)

allows us to write the γ-functions:

γLa =

∫
dΩ̂ Qa(Ω̂) eH,α(Ω̂) eH,β(Ω̂) e2πifΩ̂·∆~x/vl , (24)
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which, finally, enables us to write the cross-correlation as a sum over these
new γ-functions:

〈Yiα,jβ〉 = 2T∆f e−2πaf(zi+zj)/vl La γLa. (25)

3.2 Rayleigh waves

Now, let’s try to extend this formalism to Rayleigh waves, characterized by
the displacement field

r(~x, t) = r1(ω, k, z) cos(ωt− ~k · ~x)k̂ + r2(ω, k, z) sin(ωt− ~k · ~x)ẑ. (26)

This is meant to capture the retrograde motion of a particle in a plane defined
by the wave propagation direction and the vertical axis. In general, we expect
the amplitude to exponentially decay, although the decay rate and amount
is frequency- and material-dependent. This behavior is encapsulated by the
eigenfunction coefficients: r1 (horizontal) and r2 (vertical). The plane wave
expansion in the above formalism is then

~r(~x, t) =

∫
dfdΩ̂R(f, Ω̂) e2πif(t−Ω̂·~x/vr)

(
r1Ω̂ + r2e

iπ/2ẑ
)
. (27)

Here, R(f, Ω̂) is the amplitude of the Rayleigh wave coming from direction
Ω̂ with frequency f , and vr is the Rayleigh wave velocity.

We proceed to define a two-point correlation, in simplest form to start
with:

〈R∗(f, Ω̂)R(f ′, Ω̂′)〉 = δ(f − f ′) δ2(Ω̂, Ω̂′)HR(f, Ω̂). (28)

Similarly to the case of body waves, the measurement of seismometer i (at
location ~xi and time t) in channel α is given by

di,α(~xi, t) = ~r(~xi, t) · α̂. (29)

Using this, we compute the cross correlation estimator Y between detector
i, channel α and detector j, channel β, ignoring the frequency dependence:

〈Yiαjβ〉 = 2T∆f

∫
dΩ̂HR(Ω̂)e2πifΩ̂·∆~x/vr × (30)[

(r1Ω̂ · α̂ + r2e
iπ/2ẑ · α̂)(r1Ω̂ · β̂ + r2e

−iπ/2ẑ · β̂)
]

(31)
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Next, we expand the spatial function in some basis Qd (pixel or spherical
harmonics):

HR(Ω̂) =
∑
d

RdQd(Ω̂). (32)

Here, HR represents the power in Rayleigh waves coming from direction Ω̂.
Using this decomposition, we calculate the gamma functions:

γRd,iαjβ =

∫
dΩ̂Qd(Ω̂)e2πifΩ̂·∆~x/vr × (33)[

(r1Ω̂ · α̂ + r2e
iπ/2ẑ · α̂)(r1Ω̂ · β̂ + r2e

−iπ/2ẑ · β̂)
]
. (34)

Finally, we write the estimator as a sum over the gamma functions:

〈Yiαjβ〉 = 2T∆fRdγ
R
d,iαjβ (35)

3.2.1 Simple model

Here, we formulate a simple model of the Rayleigh wave eigenfunctions:

r1(ω, k, z) = e−z/α (36)

r2(ω, k, z) = εe−z/α (37)

In this model, both the horizontal and vertical amplitudes decay with depth;
this behavior is controlled by a constant α, which we expect to be propor-
tional to the wavelength of the Rayleigh wave. The ε parameter controls the
relative vertical and horizontal amplitudes.

Using this formulation results in the following gamma functions:

γRd,iαjβ =

∫
dΩ̂Qd(Ω̂)e2πifΩ̂·∆~x/vre−(zi+zj)/α × (38)[

(Ω̂ · α̂ + εeiπ/2ẑ · α̂)(Ω̂ · β̂ + εe−iπ/2ẑ · β̂)
]
, (39)

which may be inserted into the above equations in order to explicitly calculate
the cross-correlation.
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3.2.2 Biexponential model

For the case of a half-space where the material properties are only functions
of depth, the equations of motion for Rayleigh waves may be solved analyt-
ically. This results in a biexponential functional form for the eigenfunctions
(see Haney and Tsai (2015)):

r1(ω, k, z) = C1e
−a1kz + C2e

−a2kz (40)

r2(ω, k, z) = C3e
−a3kz + C4e

−a4kz (41)

We generally take C1 to be 1 in order to break some degeneracy between the
coefficients. We can also write k in terms of the phase velocity (cp), since
these eigenfunctions describe a particular frequency of Rayleigh wave.

r1 = e−a1ωz/cp + C2e
−a2ωz/cp (42)

r2 = C3e
−a3ωz/cp + C4e

−a4ωz/cp (43)

We note that there is still some degeneracy under interchange of C3 and
a3 with C4 and a4, which can be eliminated by fixing the ranges of these
parameters.

These eigenfunctions may be inserted into Eq. 33 in order to calculate the
gamma functions. We also note that that we use the phase velocity cp in the
gamma functions for this model (in place of a general Rayleigh wave velocity
vr). This functional form allows for the vertical and horizontal amplitudes to
vary independently and does not restrict them to be monotonically decreasing
with depth; it has been studied in detail in Prestegard (2016), including
estimates for the eigenfunction parameters.
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