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1 Introduction

We develop a formalism for estimating the modal content of a seismic wave
field, using a limited number of seismic measurements.

2 Formalism

Let us start with the shear and pressure wave fields, 5(Z,t) and p(Z, t) (others
can be added as well). The plane wave expansions of these are:
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Here, Q) denotes the wave propagation direction, f is frequency, S a(f, Q) is
the amplitude of the shear wave of polarization A, defined by the unit vector
3 A(Q) that is perpendicular to the wave propagation direction Q), P(f, Q)
is the amplitude of the pressure wave which has a single polarization in the
longitudinal direction (Q), and vy and v, are the speeds of the shear and
pressure waves respectively. We can then define two-point correlations:
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(P(f,Q) P(f,) = o(f = ) 8*(2.Q) Hp(f,Q) (4)
(Sa(F, ) P(f,2)) = 0 (5)



Here, 0’s denote the Kronecker or Dirac delta functions, and H’s denote
the power in the shear waves of polarization A or in pressure waves. These
assumed two-point correlations essentially state that waves at different fre-
quencies, from different directions, and of different polarization (shear or
pressure) are all uncorrelated.

Seismometer i at a location Z; then measures in the Z direction:

dio (T3, 1) = (835, 1) + p(@5,1)) - & (6)
and similarly for directions g and 2. In principle we should add the seismome-
ter noise to this measurement, but we will assume that the seismic noise floor
is significantly higher than the instrument noise. Now we can compute the
cross-correlation between channels of two seismometers located at different
locations (we denote the channels by a and 3, they take values z,y, z and in
general need not be the same):
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where we have defined projections e o(Q) = €4(Q) - & and Qq = Q- &, and
AZ = Z; — ;. The time integral is trivial. Also, we can perform the analysis
in a small frequency bin Af so that the frequency integral is also simple (we
add a factor of 2 when switching to integration over frequencies between 0
and +00):
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where we have suppressed the frequency dependence of the shear and pressure
wave amplitudes. We can then parameterize the amplitudes in terms of
whatever basis {Q,(€2)} would be most useful:
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HP(Q) = ZPa Qa(Q) (11>
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One useful basis may be the spherical harmonics, Qym () = Yim(€2). Another
basis choice could be ”pixels”, i.e. specific propagation directions (¢, (Q) =
5( — Q). Either way, we can define
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Note we suppressed the indices ija/3. We can then write

(Yiajg) = 2TAf(S1a7s1a + Sovvs2e + Pevpe)
= Sava (13)
where the repeated indices are summer over (and the sum over the index d
in the last line includes all 3 sums in the previous line). The goal of the

analysis is to estimate the coefficients Si,, Sap, P. (or, equivalently, Sy). We
define the likelihood as

L o< exp < — (Y = v5Sa)N~H(Y; — %‘dsd)> (14)

where ¢ now runs over all detector/channel pairs, and d runs over all basis
elements. The covariance matrix N in our case is simple - we can assume
that all detectors and channels have similar noise floors, constant in time, so
N then becomes proportional to the identity matrix and we can ignore it in
likelihood maximization. The best estimate is then given by

S=0"y) Y (15)
where in the last line we think of v as a matrix of elements 7;4. So the
problem reduces to computing the v matrix, which can be done once the

basis is chosen using Eq. 12. Note that it is straightforward to add other
components of the seismic wave field.

3 Rayleigh Waves

Now let’s try to extend this formalism to Rayleigh waves, characterized by
the displacement field

r(Z,t) = e /@ (cos(wt — k- D)k + esin(wt — k - f)é) : (16)
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This is meant to capture retrograde motion of a particle, in a plane defined
by the wave propagation direction and the vertical axis. The amplitude
exponentially decays with a decay constant o that is proportional to the
wavelength of the Rayleigh wave. The coefficient € is dependent on the
medium, and typically takes values between 0.7 and 1.3. The plane wave
expansion in the above formalism is then
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Then proceed with defining a two-point correlation, in simplest form to start
with:

(R(F,0) RS, Q) = 6(f = f) 8°(0. ) Ha(f,) (18)
and the seismometer ¢ measurement in channel a (x, y, or z) would be
dio(Z,t) = 7T, 1) - a. (19)

Then we can compute the cross correlation estimator Y as above (between
detector i channel a and detector j channel b), ignoring the frequency de-
pendence:
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Now expand the spatial function in some basis (pixel or spherical har-
monics):

Hp(Q) = zd:Rd Qa(2) (21)
which leads to the new v functions:
A / a0 Qd(Q) 2TifQ-AT v,
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and finally we can write the estimator as a sum over the gamma functions:

Yiajo) = 2TAfeFT=/ R g, (23)



