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1 Introduction

We develop a formalism for estimating the modal content of a seismic wave
field, using a limited number of seismic measurements.

2 Formalism

Let us start with the shear and pressure wave fields, s⃗(x⃗, t) and p⃗(x⃗, t) (others
can be added as well). The plane wave expansions of these are:

s⃗(x⃗, t) =
∑
A

∫
dfdΩ̂ SA(f, Ω̂) e⃗A(Ω̂) e

2πif(t−Ω̂·x⃗/vs) (1)

p⃗(x⃗, t) =
∫

dfdΩ̂ P (f, Ω̂) Ω̂ e2πif(t−Ω̂·x⃗/vp) (2)

Here, Ω̂ denotes the wave propagation direction, f is frequency, SA(f, Ω̂) is
the amplitude of the shear wave of polarization A, defined by the unit vector
e⃗A(Ω̂) that is perpendicular to the wave propagation direction Ω̂), P (f, Ω̂)
is the amplitude of the pressure wave which has a single polarization in the
longitudinal direction (Ω̂), and vs and vp are the speeds of the shear and
pressure waves respectively. We can then define two-point correlations:

⟨S∗
A(f, Ω̂) SA′(f ′, Ω̂′)⟩ = δAA′ δ(f − f ′) δ2(Ω̂, Ω̂′) HS,A(f, Ω̂) (3)

⟨P ∗(f, Ω̂) P (f ′, Ω̂′)⟩ = δ(f − f ′) δ2(Ω̂, Ω̂′) HP (f, Ω̂) (4)

⟨S∗
A(f, Ω̂) P (f ′, Ω̂′)⟩ = 0 (5)

1



Here, δ’s denote the Kronecker or Dirac delta functions, and H’s denote
the power in the shear waves of polarization A or in pressure waves. These
assumed two-point correlations essentially state that waves at different fre-
quencies, from different directions, and of different polarization (shear or
pressure) are all uncorrelated.

Seismometer i at a location x⃗i then measures in the x̂ direction:

di,x(x⃗i, t) = (s⃗(x⃗i, t) + p⃗(x⃗i, t)) · x̂ (6)

and similarly for directions ŷ and ẑ. In principle we should add the seismome-
ter noise to this measurement, but we will assume that the seismic noise floor
is significantly higher than the instrument noise. Now we can compute the
cross-correlation between channels of two seismometers located at different
locations (we denote the channels by α and β, they take values x, y, z and in
general need not be the same):

⟨Yiα,jβ⟩ =
∫ T/2

−T/2
dt diα(x⃗i, t)djβ(x⃗j, t) (7)

=
∫ T/2

−T/2
dt

∫
dfdΩ̂

(∑
A

HS,A(f, Ω̂)eA,α(Ω̂)eA,β(Ω̂)e
2πifΩ̂·∆x⃗/vs

+ HP (f, Ω̂)ΩαΩβe
2πifΩ̂·∆x⃗/vp

)
(8)

where we have defined projections eA,α(Ω̂) = e⃗A(Ω̂) · α̂ and Ωα = Ω̂ · α̂, and
∆x⃗ = x⃗i− x⃗j. The time integral is trivial. Also, we can perform the analysis
in a small frequency bin ∆f so that the frequency integral is also simple (we
add a factor of 2 when switching to integration over frequencies between 0
and +∞):

⟨Yiα,jβ⟩ = 2T∆f
∫

dΩ̂
(∑

A

HS,A(Ω̂)eA,α(Ω̂)eA,β(Ω̂)e
2πifΩ̂·∆x⃗/vs

+ HP (Ω̂)ΩαΩβe
2πifΩ̂·∆x⃗/vp

)
(9)

where we have suppressed the frequency dependence of the shear and pressure
wave amplitudes. We can then parameterize the amplitudes in terms of
whatever basis {Qa(Ω̂)} would be most useful:

HS,A(Ω̂) =
∑
a

SA,a Qa(Ω̂) (10)

HP (Ω̂) =
∑
a

Pa Qa(Ω̂) (11)
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One useful basis may be the spherical harmonics, Qlm(Ω̂) = Ylm(Ω̂). Another
basis choice could be ”pixels”, i.e. specific propagation directions QΩ̂0

(Ω̂) =

δ(Ω̂− Ω̂0). Either way, we can define

γS1a =
∫

dΩ̂ Qa(Ω̂)e1,α(Ω̂)e1,β(Ω̂)e
2πifΩ̂·∆x⃗/vs

γS2a =
∫

dΩ̂ Qa(Ω̂)e2,α(Ω̂)e2,β(Ω̂)e
2πifΩ̂·∆x⃗/vs

γPa =
∫

dΩ̂ Qa(Ω̂)ΩαΩβe
2πifΩ̂·∆x⃗/vp (12)

Note we suppressed the indices ijαβ. We can then write

⟨Yiα,jβ⟩ = 2T∆f(S1aγS1a + S2bγS2b + PcγPc)

= Sdγd (13)

where the repeated indices are summer over (and the sum over the index d
in the last line includes all 3 sums in the previous line). The goal of the
analysis is to estimate the coefficients S1a, S2b, Pc (or, equivalently, Sd). We
define the likelihood as

L ∝ exp
(
− (Y ∗

i − γ∗
idSd)N

−1(Yi − γidSd)
)

(14)

where i now runs over all detector/channel pairs, and d runs over all basis
elements. The covariance matrix N in our case is simple - we can assume
that all detectors and channels have similar noise floors, constant in time, so
N then becomes proportional to the identity matrix and we can ignore it in
likelihood maximization. The best estimate is then given by

S⃗ = (γT∗γ)−1γ∗Y⃗ (15)

where in the last line we think of γ as a matrix of elements γid. So the
problem reduces to computing the γ matrix, which can be done once the
basis is chosen using Eq. 12. Note that it is straightforward to add other
components of the seismic wave field.

3 Rayleigh Waves

Now let’s try to extend this formalism to Rayleigh waves, characterized by
the displacement field

r(x⃗, t) = e−z/α
(
cos(ωt− k⃗ · x⃗)k̂ + ϵ sin(ωt− k⃗ · x⃗)ẑ

)
. (16)
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This is meant to capture retrograde motion of a particle, in a plane defined
by the wave propagation direction and the vertical axis. The amplitude
exponentially decays with a decay constant α that is proportional to the
wavelength of the Rayleigh wave. The coefficient ϵ is dependent on the
medium, and typically takes values between 0.7 and 1.3. The plane wave
expansion in the above formalism is then

r⃗(x⃗, t) =
∫

dfdΩ̂ e−z/α R(f, Ω̂) e2πif(t−Ω̂·x⃗/vr)
(
Ω̂ + ϵẑeiπ/2

)
(17)

Then proceed with defining a two-point correlation, in simplest form to start
with:

⟨R∗(f, Ω̂) R(f ′, Ω̂′)⟩ = δ(f − f ′) δ2(Ω̂, Ω̂′) HR(f, Ω̂) (18)

and the seismometer i measurement in channel a (x, y, or z) would be

di,a(x⃗i, t) = r⃗(x⃗i, t) · â. (19)

Then we can compute the cross correlation estimator Y as above (between
detector i channel a and detector j channel b), ignoring the frequency de-
pendence:

⟨Yia,jb⟩ = 2T∆f
∫

dΩ̂ e−(zi+zj)/αHR(Ω̂)e
2πifΩ̂·∆x⃗/vr(

(Ω̂ · â+ ϵeiπ/2ẑ · â)(Ω̂ · b̂+ ϵe−iπ/2ẑ · b̂)
)

(20)

Now expand the spatial function in some basis (pixel or spherical har-
monics):

HR(Ω̂) =
∑
d

Rd Qd(Ω̂) (21)

which leads to the new γ functions:

γRd =
∫

dΩ̂ Qd(Ω̂)e
2πifΩ̂·∆x⃗/vr(

(Ω̂ · â+ ϵeiπ/2ẑ · â)(Ω̂ · b̂+ ϵe−iπ/2ẑ · b̂)
)

(22)

and finally we can write the estimator as a sum over the gamma functions:

⟨Yia,jb⟩ = 2T∆fe−(zi+zj)/αRdγRd (23)
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