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1 Introduction

We develop a formalism for estimating the modal content of a seismic wave
field, using a limited number of seismic measurements.

2 Formalism

Let us start with the shear and pressure wave fields, §(Z,t) and p(Z, t) (others
can be added as well). The plane wave expansions of these are:
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Here, ) denotes the wave propagation direction, f is frequency, S4(f, Q) is
the amplitude of the shear wave of polarization A, defined by the unit vector
EA(Q) that is perpendicular to the wave propagation direction Q), P(f, Q)
is the amplitude of the pressure wave which has a single polarization in the
longitudinal direction (), and v, and v, are the speeds of the shear and
pressure waves respectively. We can then define two-point correlations:
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Here, 0’s denote the Kronecker or Dirac delta functions, and H’s denote
the power in the shear waves of polarization A or in pressure waves. These
assumed two-point correlations essentially state that waves at different fre-
quencies, from different directions, and of different polarization (shear or
pressure) are all uncorrelated.

Seismometer i at a location Z; then measures in the Z direction:
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and similarly for directions g and 2. In principle we should add the seismome-
ter noise to this measurement, but we will assume that the seismic noise floor
is significantly higher than the instrument noise. Now we can compute the
cross-correlation between channels of two seismometers located at different
locations (we denote the channels by a and 3, they take values z,y, z and in
general need not be the same):
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where we have defined projections e o(Q) = €4(Q) - & and Qq = Q- &, and
AZ = Z; — ;. The time integral is trivial. Also, we can perform the analysis
in a small frequency bin Af so that the frequency integral is also simple (we
add a factor of 2 when switching to integration over frequencies between 0
and +00):
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where we have suppressed the frequency dependence of the shear and pressure
wave amplitudes. We can then parameterize the amplitudes in terms of
whatever basis {Q,(€2)} would be most useful:
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One useful basis may be the spherical harmonics, Qym () = Yim(€2). Another
basis choice could be ”pixels”, i.e. specific propagation directions (¢, (Q) =
5( — Q). Either way, we can define
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Note we suppressed the indices ija/3. We can then write
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where the repeated indices are summer over (and the sum over the index d
in the last line includes all 3 sums in the previous line). The goal of the
analysis is to estimate the coefficients Si,, Sap, P. (or, equivalently, Sy). We
define the likelihood as
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where ¢ now runs over all detector/channel pairs, and d runs over all basis
elements. The covariance matrix N in our case is simple - we can assume
that all detectors and channels have similar noise floors, constant in time, so
N then becomes proportional to the identity matrix and we can ignore it in
likelihood maximization. The best estimate is then given by
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where in the last line we think of v as a matrix of elements 7,4. So the
problem reduces to computing the v matrix, which can be done once the
basis is chosen using Eq. 12. Note that it is straightforward to add other
components of the seismic wave field.



