Gravitational-Waves Detectors and Seismic Noise

Vuk Mandic University of Minnesota 10/23/15

General Relativity

- Einstein's General Relativity:
 - » Mass/Energy and Space-Time are related.
- Presence of mass distorts the fabric of space-time.
 - » Straight lines not always shortest distances.
- Gravity is an effect of curved space-time.

Gravitational Waves

- Newtonian gravity: instantaneous action at a distance.
- General Relativity: the "signal" travels at the speed of light.
- Weak field limit: $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$
- Einstein's field equations reduce to the wave equation:

$$\left(\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}\right) h_{\mu\nu} = 0$$

• Two polarizations:

 $h = ah_+ + bh_{\times}$ a,b ~ f($\omega t - k \cdot x$)

Gravitational Waves

Two Polarizations:

"+" Polarization

"x" Polarization

Compact Binary Coalescences

- Compact binary objects:
 - » Two neutron stars and/or black holes.
- Inspiral toward each other.
 - » Emit gravitational waves as they inspiral.
- Amplitude and frequency of the waves increases over time, until the merger.
- Waveform relatively well understood, matched template searches.
- Science:
 - » Strong field GR (BH-BH mergers).
 - » Equation of state in NS.
 - » Standard "sirens" probe cosmology.

Bursts

- Many potential transient sources:
 - » Supernovae: probe the explosion mechanisms.
 - » Gamma Ray Bursts: collapse of rapidly rotating massive stars or neutron star mergers.
 - » Pulsar glitches: accretion.
 - » Cosmic strings cusps.
- Models are ok, but not essential:
 - » Search for power excess in the data.
 - » Search for any short signal with measurable strain signal.

Rotational instabilities Convection

C. Ott

Aspherical outflows

Sources: Periodic

- Pulsars with mass non-uniformity:
 - » Small "mountain".
 - » Density non-uniformity.
 - » Dynamic processes inside neutron star, leading to various instabilities.
- Produce gravitational-waves, often at twice the rotational frequency.
- Waveform well understood:
 - » Sinusoidal, but Doppler-modulated.
- Continuous source!

Sources: Stochastic Background

- Incoherent superposition of many unresolved sources.
- Cosmological:
 - Inflationary epoch, preheating, reheating
 - » Phase transitions
 - » Cosmic strings
 - » Alternative cosmologies
- Astrophysical:
 - » Supernovae
 - » Magnetars
 - » Double neutron stars
- Potentially could probe physics of the very-early Universe.

Interferometers as Gravitational Wave Detectors

• Gravitational wave effectively stretches one arm while compressing the other.

Interferometers as Gravitational Wave Detectors

- Gravitational wave effectively stretches one arm while compressing the other.
- Interferometer measures the armlength difference.
 - » Suspended mirrors act as "freely-falling".
 - » Dark fringe at the detector.

Interferometers as Gravitational Wave Detectors

- Gravitational wave effectively stretches one arm while compressing the other.
- Interferometer measures the armlength difference.
 - » Suspended mirrors act as "freely-falling".
 - » Dark fringe at the detector.
- Fabry-Perot cavities in the arms
 - » Effectively increase arm length ~100 times.

Interferometers as Gravitational Wave Detectors

- Gravitational wave effectively stretches one arm while compressing the other.
- Interferometer measures the armlength difference.
 - » Suspended mirrors act as "freely-falling".
 - » Dark fringe at the detector.
- Fabry-Perot cavities in the arms
 - » Effectively increase arm length ~100 times.
- Power-recycling mirror
 - » Another factor of ~40 in power.

- Rough sensitivity estimate
 - » Input laser power: ~5 Watt
- Sensitivity (ΔL) ~ λ (~ 10⁻⁶ m)
 / Number of Bounces in Arm (~100)
 / Sqrt(Number of Photons (~10²¹))
 ~ 3 × 10⁻¹⁹ m
- Strain Sensitivity:
 - » $h = \Delta L / L \sim 10^{-22}$
 - » L = 4 km

LIGO

• Laser Interferometer Gravitational-wave Observatory.

Network of Gravitational-Wave Detectors: 2005-2010

Advanced LIGO

- Major improvements relative to the Initial LIGO (2005-2010).
- Keep the same facilities, but redesign all subsystems.
 - » Improving sensitivity over the whole frequency range.
- Increased laser power in arms.
- Better seismic isolation.
 - » Quadruple pendula for each mass
- Larger mirrors to suppress thermal noise.
- Silica wires to suppress suspension thermal noise.
- "New" noise source due to increased laser power: radiation pressure noise.
- Signal recycling mirror
 - » Allows tuning sensitivity for a particular frequency range.

Advanced LIGO

- Significant (10x) improvements in sensitivity.
- Can observe 10x further.
- ~1000x larger accessible volume, ~1000x more possible sources.
- Already running, data rolling in!

Einstein Telescope

- EU funded a design study to define the scientific scope and conceptual design of a third-generation detector.
- Xylophone concept: several detectors, focusing on different frequency bands.
- 10km arms, triangle configuration. •
- Underground to improve on seismic • and Newtonian noise.
- Novel optical configurations, squeezing, more powerful laser (500W).
- Cryogenic mirrors, novel coatings, larger beams to reduce thermal noise.

Beyond Advanced LIGO

- Newtonian noise limits sensitivity below 10 Hz.
 - » Fluctuations in the local gravity.
- Underground may be better:
 - » Seismic motion is smaller.
 - » No atmospheric fluctuations, very stable environment.
 - » No people.
- This has never been quantified!

Newtonian Noise due to Seismic Noise

- Seismic noise generates fluctuations in the local gravitational field, via two main mechanisms.
- Density perturbations:
 - Caused by body pressure waves.
 - Caused by P-component of surface waves (suppressed with depth).

- Dragging effects, produced at interfaces:
 - Surface and body waves at the surface (suppressed with depth).
 - P and S body waves at the cavity surface.

Newtonian Noise due to Seismic Noise

- Need better understanding of the seismic wave field.
- Array measurements done at LIGO sites to get better estimates.
 - Assuming the entire wave field dominated by Rayleigh surface waves.
 - Do we need underground seismometers?
- Underground:
 - Modal content and directionality matters even more.
 - How large should the seismic array be? What configuration?

Driggers, Harms, Adhikari, Phys. Rev. D 86, 102001 (2012)

Measure the seismic field better. Develop simulations of NN for the given seismic field.

Data Analysis Directions

- Two main directions we would like to pursue.
- Wiener filtering:
 - » Don't need to understand the seismic wave field composition/model, but try to measure it sufficiently well.
 - » Then you can directly subtract "seismic" contributions to the GW channels.
 - » Can do this already for aLIGO.
- Estimate the seismic wave field composition.
 - » Combine with a model to estimate the corresponding Newtonian Noise.
 - » Use this to inform the design of future detectors.

Wiener Filtering

- Use two seismometers to predict (and subtract) the seismic signal at the third seismometer.
- ~50x suppression across the microseismic peak.
- Relatively robust:
 - » Different time-scales
 - » Different depths
- Plan to repeat the study with the larger array.
 - » Will hear from Michael and Jan about this on Sunday.

M. Coughlin et al, CQG 31, 2014, 215003.

Estimating Seismic Field Composition

- In general, the seismic wave field is complex.
- Pressure (P) waves are longitudinal and fastest.
- Shear (S) waves are transverse, a bit slower, and have two polarizations.
- Surface waves are a complicated composition of P- and Swaves, whose amplitude exponentially decays with depth.
- Scattering and reflection leads to mixing of different modes.

$$\vec{s}(\vec{x},t) = \sum_{A} \int df d\hat{\Omega} S_{A}(f,\hat{\Omega}) \vec{e}_{A}(\hat{\Omega}) e^{2\pi i f(t-\hat{\Omega}\cdot\vec{x}/v_{s})}$$

$$\vec{p}(\vec{x},t) = \int df d\hat{\Omega} P(f,\hat{\Omega}) \hat{\Omega} e^{2\pi i f(t-\hat{\Omega}\cdot\vec{x}/v_{p})}$$

$$\vec{r}(\vec{x},t) = \int df d\hat{\Omega} e^{-z/\alpha} R(f,\hat{\Omega}) e^{2\pi i f(t-\hat{\Omega}\cdot\vec{x}/v_{r})} \left(\hat{\Omega} + \epsilon \hat{z} e^{i\pi/2}\right)$$

Estimating Seismic Field Composition

- Adapting the radiometer algorithm from the gravitational-wave field. $H(\hat{\Omega}) = \sum S_d Q_d(\hat{\Omega})$
- Use cross correlations between different
 seismometers/channels to optimally estimate directional content.

$$\begin{split} \left\langle Y_{aibj} \right\rangle &= \sum_{d} S_{d} \gamma_{d} \\ \gamma_{S1a} &= \int d\hat{\Omega} \ Q_{a}(\hat{\Omega}) e_{1,\alpha}(\hat{\Omega}) e_{1,\beta}(\hat{\Omega}) e^{2\pi i f \hat{\Omega} \cdot \Delta \vec{x} / v_{s}} \\ \gamma_{S2a} &= \int d\hat{\Omega} \ Q_{a}(\hat{\Omega}) e_{2,\alpha}(\hat{\Omega}) e_{2,\beta}(\hat{\Omega}) e^{2\pi i f \hat{\Omega} \cdot \Delta \vec{x} / v_{s}} \\ \gamma_{Pa} &= \int d\hat{\Omega} \ Q_{a}(\hat{\Omega}) \Omega_{\alpha} \Omega_{\beta} e^{2\pi i f \hat{\Omega} \cdot \Delta \vec{x} / v_{p}} \\ \vec{S} &= (\gamma^{T*} \gamma)^{-1} \gamma^{*} \vec{Y} \end{split}$$

Seismic Radiometer Simulations

- S-wave recovery:
- 2 Hz wave
- 45 degree polarization
- 8 detectors
- Randomly spaced in a cubic kilometer.

Seismic Radiometer Simulations

-1

-0.5

0.5

۵

Normalized significance

• Seismometer array configuration.

What do we hope to get from the workshop?

- Better understanding of the seismic waves:
 - » Speed for different modes
 - » Speed anisotropy
 - » What is the appropriate model for the Rayleigh field?
 - » Depth dependence of the Rayleigh waves
 - » P and S "content" of the Rayleigh waves
- Would like to develop/test the radiometer algorithm.
 - » Potentially something new we could give to the geophysics
- Compare radiometer with existing techniques.
 - » What are the best techniques to use?
 - » Compare limitations and performance in different situations...

• Seismic Noise

- Seismic Noise
 - » Active and passive isolation

• Seismic Noise

- » Active and passive isolation
- » Suspensions
- » Effective "Seismic Wall" at 40 Hz

- Seismic Noise (<40 Hz)
 - » Active and passive isolation
 - » Suspensions
 - » Effective "Seismic Wall" at 40 Hz

• Thermal Noise (40-150 Hz)

- » Suspension wires
- » Internal mirror modes

• Shot noise (>150 Hz)

- Substrates: SiO₂
 - » 25 cm Diameter, 10 cm thick
 - » Internal mode Q's > 2×10^6
- Polishing
 - » Surface uniformity < 1 nm rms (λ / 1000)