University of Minnesota
School of Physics and Astronomy

GRADUATE WRITTEN EXAMINATION
SPRING 2003 - PART I

Thursday, January 16, 2003 - 9:00 A.M. to 12:00 NOON

Part I of this exam consists of 12 problems of equal weight. You will be graded on your
10 best efforts.

This is a closed book examination. You may use a calculator. A list of some physical
constants and properties that you may require is included; please take a moment to review
its contents before starting the examination.

Please put your CODE NUMBER (not your name) in the UPPER RIGHT-HAND
CORNER of each piece of paper that you submit, along with the relevant problem
number in the UPPER LEFT-HAND CORNER.

BEGIN EACH PROBLEM ON A FRESH SHEET OF PAPER, so that no sheet
contains work for more than one problem.

USE ONLY ONE SIDE of the paper; if you require more than one sheet, be sure to
indicate “page 17, “page 2", etc., under the problem number already entered on the sheet.

Once completed, all your work should be put into the manila envelope provided, IN
ORDER of the problem numbers.



Constants Symbols Values
Speed of light in vacuum C 3.00x10° m/s
Elementary charge e 1.60x10™"° C
Permittivity constant € 8.85x10™"2 F/m
Permeability constant Ho 1.26x10° H/m
Electron rest mass me 9.11x10™ kg
0.511 MeV/c*
Proton rest mass m, 1.67x10°% kg
0.938 GeV/c
Neutron rest mass my 1.68x107%" kg
0.940 GeV/c?
Planck constant h 6.63x107* I.s
4.14x10% eV.s
Molar gas constant R 8.31 J/mol.K
Avogadro’s number Na 6.02x10% /mol
Boltzmann constant kg 1.38x10% J/K
8.62x107° eV/k
Standard atmosphere 1.01x10° N/m?
Faraday constant F 9.65%10* C/mol
Stefan-Boltzmann constant o 5.67x10° W/m*K*
Rydberg constant R 1.10x10" m™
Bohr radius a 5.29x10"" m
Gravitational constant G 6.67x10"" m’/s® kg
Electron magnetic moment He 9.28x10%* J/T '
Proton magnetic moment Up 1.41x10% J/T
Bohr magneton UB 9.27x10** J/T
Nuclear magneton N 5.05x10% J/T
Earth radius 6.37x10° m
Earth-Sun distance 1.50x10" m
Earth-Moon distance 3.82x10° m

Mass of Earth
Mass of Sun
Mass of Moon

5.98x10%* kg
1.99x10% kg
7.36x10™ kg
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I. Consider a hydrogen atom located at r = 0. Assume that in addition to the proton
Coulomb potential, the electron experiences a small short-ran ge potential Ua’ & (r), with
U<<1Ry , anda the Bohr radius. Calculate the correction to the energy of the 1s-2p
transition. (This model accounts for the finite size of the nucleus).

2. Experimental measurements of the heat capacity of aluminum at low temperatures (below
about 50 K) can be fit to the formula C, = aT +bT" where C, 1s the heat capacity of one

mole of aluminum, with a = 0.00135 J/K* and b =2.48 x 10™ J/K*. From this data, find a
formula for the entropy of a mole of aluminum as a function of temperature. Evaluate your
formulaat T =1 K and T = 10 K, expressing your answers in conventional units (J/K).

3. Two arbitrarily shaped conducting objects with electric charge +Qo and —Qq, respectively,
are immersed in a medium with conductivity s. What is the current that flows between the
two objects as a function of time?

4. The figure shows a positive point charge Q, located at the point (0, d, d). Two thin semi-
infinite, grounded, conducting plates lying in the x-z and x-y planes meet at the x-axis as
shown.
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a) What is the electric field at the point P shown, right at the surface of the conductor
(i.e.,atz=g,as e —0)?
b) Determine the local surface charge density at this point P.

5. Arecent Fermilab experiment obtained direct evidence for the existence of the tau-
neutrino Vs by observing the reaction v +n — p + T, where the produced T~ was tracked in
emulsion detectors before it decayed. Assuming the neutron 7 is at rest, what is the
minimum energy that the v must have so that this reaction can take place? (For this
problem, ignore the mass of the v: as well as the proton-neutron mass difference, and use

P A =
my= 1777 MeV/c™ for the T mass.)

6. NASA’s Polar satellite is in an orbit around Earth with an apogee of 9 Rg and a perigee
of 1.8 Rg, measured from the center of the Earth (1 Rg = 1 Earth radius = 6380 km).
Determine its semi-major axis, eccentricity and orbital period.



7. A particle of mass m slides without friction on the surface of a sphere of radius a. If the
particle starts at rest on the top of the sphere, where does the particle leave the surface of the
sphere?
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8. Evaluate, correct to five decimal places J dx
0

X
9. Find the ground state energy for particle in the following potential

Vix)=imaw’x* at x>0, V(x)=o at x<0
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10. For the state y = Acos” ¢ where ¢ is the azimuthal angle, determine the probabilities
for different m, the z-projection of angular momentum.

I'1. In the course of pumping up a bicycle tire, a liter of air at 300 K and atmospheric
pressure is compressed adiabatically to a pressure of 7 atm. (Air is mostly diatomic nitrogen
and oxygen).

a) What is the final volume of the air after compression?

b) How much work is done in compressing the air?

¢) What is the temperature after compression?

12. A vertical square loop of copper with sides of length, /, is falling from a region in which
the magnetic field is uniform and of strength B into a region in which the magnetic field is
zero. At t =0 the lower edge of the square crosses the boundary into the region of zero
magnetic field. The radius of the wire is r, the mass density of the copper is pm, and the
conductivity is . Assume the copper square reaches a steady velocity (while still crossing
the boundary), calculate this velocity.
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GRADUATE WRITTEN EXAMINATION
SPRING 2003 - PART 2

Friday, January 17, 2003 - 9:00 A.M. to 1:00 P.M.

Part 2 of this exam consists of 6 problems of equal weight. You will be graded on your 5
best efforts.

This is a closed book examination. You may use a calculator. A list of some physical
constants and properties that you may require is included; please take a moment to review
its contents before starting the examination.

Please put your CODE NUMBER (not your name) in the UPPER RIGHT-HAND
CORNER of each piece of paper that you submit, along with the relevant problem
number in the UPPER LEFT-HAND CORNER.

BEGIN EACH PROBLEM ON A FRESH SHEET OF PAPER, so that no sheet
contains work for more than one problem.

USE ONLY ONE SIDE of the paper; if you require more than one sheet, be sure to
indicate “page 1, “page 2", etc., under the problem number already entered on the sheet.

Once completed, all your work should be put into the manila envelope provided, IN
ORDER of the problem numbers.



Constants Symbols ~ Values
Speed of light in vacuum c 3.00x10° m/s
Elementary charge e 1.60x10™" C
Permittivity constant € 8.85x10"% F/m
Permeability constant Lo 1.26x10° H/m
Electron rest mass me 9.11x10”' kg
0.511 MeWc‘3
Proton rest mass mp 1.67x107%7 kg
0.938 GeV/c
Neutron rest mass my 1.68x107% k§
0.940 GeV/c
Planck constant h 6.63x10>* I.s
4.14x10" eV s
Molar gas constant R 8.31 J/mol.K
Avogadro’s number Na 6.02x10% /mol
Boltzmann constant kg 1.38x103 J/K
8.62x10” eV/k
Standard atmosphere 1.01x10°> N/m?
Faraday constant F 9.65%10* C/mol
Stefan-Boltzmann constant log 5.67x10® W/m*K*
Rydberg constant R 1.10x10" m
Bohr radius 2  5.29x10"'m
Gravitational constant G 6.67x10"" m’/s* kg
Electron magnetic moment He 9.28x10% J/T ‘
Proton magnetic moment Hp 1.41x107° J/T
Bohr magneton HUs 9.27x10°%* J/T
Nuclear magneton - UN 5.05x10%7 J/T
Earth radius 6.37x10° m
Earth-Sun distance 1.50x10'' m
Earth-Moon distance 3.82x10° m
Mass of Earth 5.98x10* kg
Mass of Sun 1.99x10%° kg
Mass of Moon 7.36x10% kg




Long problems
1) a) Calculate the transmission coefficient for the delta-function potential U(x) = x-xp).

Hint: show that the Schrédinger equation with the delta-function potential leads to the
following matching condition:
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E =0

b) Find the equation for the energies E at which a particle is not reflected by a potential
consisting of two delta-functions:

Ux)=a{d(x)+ 6(x-a)}.
Solve this equation in the limit
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2. Heat capacities are normally positive, but there is an important class of exceptions:
systems of particles held together by gravity, such as stars and star clusters.

a) Consider a system of just 2 particles, with identical masses, orbiting in circles
about their center of mass. Show that the gravitational potential energy of the
system is -2 times the total kinetic energy.

b) The conclusion of part a) turns out to be true, at least on average, for any
system of particles held together by mutual gravitational attraction:

U potential = ~2U .. here each U refers to the total energy (of that type) for

the entire system, averaged over some sufficiently long time. (This result is
the Virial theorem). Suppose, then, that you add some energy to such a
system and then wait for the system to equilibrate. Does the average total
kinetic energy increase or decrease? Explain.

¢) A star can be modeled as a gas of particles that interact with each other only
gravitationally. According to the equipartition theorem, the average kinetic

energy of the particles in such a star should be %kT , where T is the average

temperature. Express the total energy of the star in terms of its average
temperature, and calculate the heat capacity. Note the sign.
d) Derive the gravitational potential energy for the star of mass M and radius R.
e) Estimate the average temperature of the sun, whose mass is 2 x 10 kg, and
whose radius is 7 x 10° m. Assume, for simplicity, that the sun is made
entirely of protons and electrons.



3. The phenomenon of “neutrino oscillations” can occur if (1) the neutrino ei genstates of the
weak interaction are distinct from the mass eigenstates and (2) the neutrino masses are non-
zero and non-degenerate. Consider the case where two of the neutrino types satisfy these
conditions, with Ive) and Iv,) representing the weak eigenstates, while Iv,) and Iv,) represent
mass eigenstates with masses m, and mo, such that: Iv.) = cos 6 Iv,) + sin 6 Iv,) and )=
—sin 8 Iv,) + cos 6 Iv2).  Fusion in the sun produces Iv.)’s. with momentum p ~ 10 MeV/c.
Assuming that the mass eigenstates propagate as plane-wave states with time-dependence
given by ¢' 27 and that m; and my << pc, and ignoring neutrino interactions inside the sun,
a) Whatis the value of 6 if all of the solar Iv,.)’s with this momentum have ‘oscillated’
into Iv,)’s when they reach the earth?
b) What is the smallest possible value of m” = | m?, —m?;| that could account for this
observation?

4. A nearly infinite solenoid with N turns / m has radius a, and carries current L. The solenoid
is connected to a circuit with a battery, a switch, and resistors R and Ra. A large cylindrical
shell with radius b and length L surrounds the solenoid as shown below. The cylinder is free
to rotate frictionlessly about its axis. The cylinder is an insulator with charge Q sprayed
uniformly over its surface. If the switch is opened and the current from the battery
interrupted, what is the angular momentum of the shell after the current has died out?

m

Uniforn Charge ___—-——— e
Q on shell =1 :
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5. Consider a double pendulum, i.e., a system consisting of 2 simple pendula each of length
[, and mass m with one pendulum suspended from the other. Calculate the frequencies of
small oscillation for this system, and describe the motion for each of the normal modes.
Assume the 2 pendula oscillate in the same plane.

6. This problem follows Bethe’s theory of the rate of a thermonuclear reaction.

The rate of the thermonuclear reaction of conversion of two deuterons to helium is very slow
because of the Coulomb repulsion U(r) = e’/r between them. Only at small distance r;, ~ 1ot
m do they reach the very deep well of nuclear attraction potential and merge. There are two
ways to overcome the Coulomb barrier. You can do it classically or via tunneling.

a) Exploring classical route, assume that deuteron gas with the concentration Ny has
the equilibrium temperature T = 10° K, and estimate the concentration of deuterons N with
such energy that they can reach the distance ro classically. It is too small and can not explain
the observed rate of the thermonuclear reaction.

b) Exploring the tunneling route, assume that two deuterons collide with kinetic
energy € in their center of mass system. Using the WKB approximation, estimate the main
exponential term of probability P to come to the distance ry via tunneling under the barrier. If
€ 1s of the order of the thermal energy this rate is very small at the above mentioned star
temperature.

¢) In 1937 Bethe realized that a much faster alternative route combines both
classical and quantum routes. Deuterons with an energy ksT << & << e*/ry can tunnel to
~ meet each other. In this case, the barrier is more transparent than for thermal deuterons,
although the concentration of such deuterons is small. He wrote the rate as the product of
number of such deuterons and tunneling probability at this energy. Both terms are
exponential so he found an exponential dependence of rate R on some function f(€). Then
optimizing f(€) with respect to €, he found the optimal € = &, and arrived at the famous law
for the temperature dependence of thermonuclear reactions. The Bethe law was the first
example in physics when a reaction rate exponentially depends not on T"' (Arhenius law) but
on T, where q < 1. Follow Bethe and find q.



