
University of Minnesota 
School of Physics and Astronomy 

GRADUATE WRITTEN EXAMINATION 

Spring 2016 – PART I 

Thursday, January 14th, 2016  – 9:00 am to 1:00 pm 

Part 1 of this exam consists of 10 problems of equal weight.  You will be graded on all 10 
problems. 

This is a closed-book examination.  You may use a calculator.  A list of some physical constants 
and properties that you may require is included.  Please take a moment to review its contents 
before starting the examination. 

Please put your assigned CODE NUMBER (not your name or student ID) in the UPPER 
RIGHT-HAND CORNER of each piece of paper that you submit, along with the relevant 
problem number in the UPPER LEFT-HAND CORNER. 

BEGIN EACH PROBLEM ON A FRESH SHEET OF PAPER, so that no sheet contains 
work for more than one problem. 

USE ONLY ONE SIDE of the paper; if you require more than one sheet, be sure to indicate, 
“page 1”, “page 2”, etc., under the problem number already entered on the sheet. 

Once completed, all your work should be put in the manila envelope provided, IN ORDER of 
the problem numbers. 



Constants Symbols values 

Speed of light in vacuum c 3.00×108 m/s 

Elementary charge e 1.60×10-19 C 

Electron rest mass me 9.11×10-31 kg 

Electron rest mass energy mec2 0.511 MeV 

Permeability constant µo 1.26×10-6 H/m 

Permeability constant/4π µo/4π 10-7 H/m 

Proton rest mass mp 1.67×10-27 kg 

Proton rest mass energy mpc2 938 MeV 

Neutron rest mass mn 1.68×10-27 kg 

Neutron rest mass energy mnc2 940 MeV 

Planck constant h 6.63×10-34 J−s 

Gravitational constant G 6.67×10-11 m3/s2−kg 

Molar gas constant R 8.31 J/mol−K 

Avogadro constant NA 6.02×1023 /mol 

Boltzmann constant kB 1.38×10-23 J/K 

Molar volume of ideal gas at STP Vm 2.24×10-2 m3/mol 

Earth radius RE 6.38×106 m 

Earth’s mass ME 5.98×1024 kg 

Earth-Sun distance 1 AU 1.50×1011 m 

Stirling’s Approximation: ln(N!) = Nln(N) – N + 
(small corrections) 
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Problem 1 
Two blocks of equal mass m are connected by a flexible cord of length L. One block is placed on 
a smooth horizontal table; the other block hangs over the edge. The cord is heavy, having a mass 
𝑚𝑚′. 
Find the acceleration of the block as a function of its position. (Assume that the cord is not 
stretchable). 

Problem 2 
Consider an ideal monatomic gas in thermodynamic equilibrium. Suppose it goes through a four 
step cycle:  (1) Isothermal compression from volume 2V0 to volume V0, where its pressure is P0; 
(2) Adiabatic compression with 𝑇𝑇𝑉𝑉𝛾𝛾−1 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  to volume V0/2; (3) Isothermal expansion 
back to volume V0; (4) Then adiabatic expansion to the initial volume 2V0 to complete the cycle.  
How much work is done during the cycle by the gas on its environment? Give your answer as a 
function of P0, V0 and γ. 

Problem 3 
At low temperatures, an insulating ferromagnet is described as a gas of non-interacting bosons 
called magnons. These magnons are related to fluctuations of the magnetic moments, which 
propagate along the ferromagnet. The energy of a magnon is given by 𝐸𝐸(𝑘𝑘) = 𝑐𝑐𝑘𝑘2, where c is a 
constant and k is the wave-vector of the magnon. The number of magnons inside the ferromagnet 
is not conserved. 

a. What is the value of the chemical potential at equilibrium?
b. At low temperatures, the specific heat of the ferromagnet is proportional to a power of

temperature, 𝐶𝐶(𝑇𝑇) ∝ 𝑇𝑇𝛼𝛼. Calculate 𝛼𝛼 for a three-dimensional ferromagnet.

Problem 4 
For a large water Cherenkov detector, you need to remove all contaminants present at 
concentration C from the water. To estimate the amount of energy that this will take, you 
calculate the least energy necessary to decontaminate 99.9% of the water, leaving all the 
contamination in the remaining 0.1%, which can be thrown away. You know the amount of 
contamination and that the process takes place at room temperature. 

a. Calculate the entropy as function of the number of contaminates first (considering a unit
cell of volume z and no exclusion of the volume).

b. Determine the change in the entropy after the decontamination took place and the
required energy.

Problem 5 
A pinhole camera has no lens, just only a small hole to form an image on the screen. If the hole 
is too large, the image is fuzzy because of the finite hole size. If it is too small, the image is fuzzy 
because of diffraction. Determine the size of the hole for the sharpest image (where both effect 
are equally strong) of a very distant object for green light with wavelength 560 nm and the 
distance from the hole to the screen of 20 cm. 
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Problem 6 
A steady charge-current flowing along a wire is known to create a magnetic field. Analogously, a 
steady spin-current 𝐼𝐼𝑠𝑠  flowing along a wire creates an electric field. The infinitesimal field 
created by an infinitesimal segment 𝑑𝑑𝑙𝑙 of the wire at a point located at the position 𝑟𝑟 (relative to 
the segment) is given by: 

𝑑𝑑𝐸𝐸�⃗ =
𝜇𝜇0𝐼𝐼𝑠𝑠
4𝜋𝜋𝑟𝑟3

𝑑𝑑𝑙𝑙 × �𝑐𝑐� −
3𝑟𝑟(𝑟𝑟 ∙ 𝑐𝑐�)

𝑟𝑟2
� 

Here, 𝑐𝑐� is the unit vector parallel to the spin direction. Consider a very long thin wire carrying a 
spin-current propagating parallel to the positive x-axis. The spins are aligned parallel to the 
positive z-axis, and the wire crosses the origin. The spin-current is given by 𝐼𝐼𝑠𝑠 = 1 𝜇𝜇𝐵𝐵

𝑠𝑠
=

9.27 10−24 𝐴𝐴𝑚𝑚2/𝑐𝑐, where 𝜇𝜇𝐵𝐵, the Bohr magneton, is the magnetic moment of an electron. 
a. Calculate the direction and the magnitude of the electric field at a point distant 𝑦𝑦 = 1 mm

from the wire along the positive y-axis.
b. Compare the magnitude of this electric field to the electrostatic field generated at the

same point by a single electron located at the origin and at rest.

Problem 7 
One end of a horizontal track of width L and negligible resistance is connected to a capacitor of 
capacitance C charged to voltage V0 of polarity shown in the figure. Since the inductance is 
small, the current can go up to 𝑉𝑉𝑜𝑜/𝑅𝑅 quickly. The system is placed in a homogeneous vertical 
magnetic field B pointing into the page. A frictionless conducting rod of mass m and resistance R 
is placed perpendicular onto the track. After the capacitor is fully charged the position of the 
switch S is changed from the position indicated by the full line to the position indicated by the 
dotted line, and the rod starts moving. 

a. In which direction does the rod move, and why?
b. What is the maximum velocity that the rod acquires?

Problem 8 
A particle of mass m is moving in a one-dimensional potential V(x) such that: 

a. Consider the motion classically. What is the period of motion in such potential and the

L
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corresponding cyclic frequency? 
b. Consider the motion in quantum mechanics and express the eigenstates |m> of the

problem in terms of the eigenstates |n> of the standard quantum harmonic oscillator. You
don't need to solve the differential equation or write down the wavefunction
corresponding to |m>.

c. Find the spectrum of the levels in the potential V(x). How is the spacing between
consecutive energy levels related to the frequency of the classical motion?

Problem 9 
The B meson factory at the Stanford Linear Accelerator Center was designed to produce pairs of 
B mesons in the reaction  𝑒𝑒+𝑒𝑒− →  𝐵𝐵𝐵𝐵�   by colliding electron and positron beams and to observe 
the decay of the B mesons in flight. At the collision point the positrons had a total energy of 9.0 
GeV (per particle). The mass of the B meson is 5.28 GeV/c2. 

a. At what minimal energy of the electrons in the electron beam the pairs of B mesons
started being produced?

b. If the energy in the electron beam was just above this threshold, what was the mean path
length of the B meson, given that its mean lifetime (in its rest frame) is 1.6 ps?

Hint: assume that the electrons are relativistic (E± = p±c). 

Problem 10 
A foil of 57Fe contains some nuclei in an excited state. They decay by emitting photons of energy 
14.4 keV. Ignore the recoil of the nuclei. The foil is at temperature 300 K, at which temperature 
its molar heat capacity is 3R. Calculate the approximate root-mean-square velocity of the iron 
nuclei and calculate how the center of the observed frequency range of the emitted photons 
varies as the temperature T increases, (dν/dT) (in Hz/K). (This quantity is also sometimes called 
the relativistic temperature coefficient of the frequency.) 

Hint: the shift of the central frequency occurs due to the time dilation. 



University of Minnesota 
School of Physics and Astronomy 

GRADUATE WRITTEN EXAMINATION 

Spring 2016 – PART II 

Friday, January 15th, 2016 – 9:00 am to 1:00 pm 

Part 2 of this exam consists of 5 problems of equal weight.  You will be graded on all 5 
problems. 

This is a closed-book examination.  You may use a calculator.  A list of some physical constants 
and properties that you may require is included.  Please take a moment to review its contents 
before starting the examination. 

Please put your assigned CODE NUMBER (not your name or student ID) in the UPPER 
RIGHT-HAND CORNER of each piece of paper that you submit, along with the relevant 
problem number in the UPPER LEFT-HAND CORNER. 

BEGIN EACH PROBLEM ON A FRESH SHEET OF PAPER, so that no sheet contains 
work for more than one problem. 

USE ONLY ONE SIDE of the paper; if you require more than one sheet, be sure to indicate, 
“page 1”, “page 2”, etc., under the problem number already entered on the sheet. 

Once completed, all your work should be put in the manila envelope provided, IN ORDER of 
the problem numbers. 



Constants Symbols values 

Speed of light in vacuum c 3.00×108 m/s 

Elementary charge e 1.60×10-19 C 

Electron rest mass me 9.11×10-31 kg 

Electron rest mass energy mec2 0.511 MeV 

Permeability constant µo 1.26×10-6 H/m 

Permeability constant/4π µo/4π 10-7 H/m 

Proton rest mass mp 1.67×10-27 kg 

Proton rest mass energy mpc2 938 MeV 

Neutron rest mass mn 1.68×10-27 kg 

Neutron rest mass energy mnc2 940 MeV 

Planck constant h 6.63×10-34 J−s 

Gravitational constant G 6.67×10-11 m3/s2−kg 

Molar gas constant R 8.31 J/mol−K 

Avogadro constant NA 6.02×1023 /mol 

Boltzmann constant kB 1.38×10-23 J/K 

Molar volume of ideal gas at STP Vm 2.24×10-2 m3/mol 

Earth radius RE 6.38×106 m 

Earth’s mass ME 5.98×1024 kg 

Earth-Sun distance 1 AU 1.50×1011 m 

Stirling’s Approximation: ln(N!) = Nln(N) – N + 
(small corrections) 
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Problem 1 
A bead of mass m is free to slide without friction on a wire in the shape of a circle (i.e. a hoop) of 
radius a. There is no friction and no gravity. The hoop rotates with constant angular velocity ω 
about an axis perpendicular to the hoop and passing through the edge of the hoop (imagine a 
hula-hoop). 
The angle θ measures the displacement of the bead from the diameter of the hoop that passes 
through the origin. In this figure, the hoop is in the xy plane, and the axis of rotation is z, 
orthogonal to the page. The origin of this coordinate system is on the edge of the hoop. 

a. Find the Hamiltonian of this system
b. Derive the equation of motion for θ (there is NO need to solve it).

Problem 2 
A long molecule is composed of N non-interacting chemical ‘monomers’ each of which can be in 
one of two states of different lengths a and b, were b > a. The whole molecule therefore can be 
between Na and Nb in length. The energy of a monomer in the longer state b is ε larger than the 
energy of a monomer in the shorter state a. You may consider the thermodynamic limit N >> 1 
to simplify the calculations. The following mathematical result may be useful: lnN! ≈ NlnN – N 
for N >> 1. 

a. Determine the partition function for one monomer.
b. At a given temperature T, find the average number of monomers in each state, and hence

the equilibrium length of the entire molecule.
c. Now, suppose that the molecule is forced to be a fixed length L, where Na < L < Nb, so

that (L – Na)/(b – a) of its monomer are in the stretched length b state. Find the internal
energy E(N,L) and the entropy S(N,T,L).

d. From question b, calculate the Helmholtz free energy F(N,T,L) and finally the force
needed to extend the molecule to length L at fixed temperature T.

Problem 3 
An electron is subject to a uniform, time-independent magnetic field directed along the positive 
z-direction, such that its Hamiltonian is given by 𝐻𝐻 = 𝜔𝜔𝑆𝑆𝑧𝑧, with 𝜔𝜔 > 0 and 𝑆𝑆𝑧𝑧 denoting the z-
component of the spin operator. At time 𝑡𝑡 = 0, the electron is in an eigenstate of the operator 
𝑆𝑆 ∙ 𝑛𝑛� with eigenvalue ℏ/2, where 𝑛𝑛� is a unit vector that lies in the xz plane and makes an angle 
𝜋𝜋/6 with the z-axis. 
Obtain the probability for finding the electron in the 𝑠𝑠𝑥𝑥 = ℏ/2 state as function of time. 
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Problem 4 
In a simplified quantum mechanical model for the ammonia molecule (NH3), the nitrogen atom 
can be either above or below the plane formed by the three hydrogen atoms (at a certain fixed 
distance). Both states (labeled by |1⟩ and |2⟩, respectively) have the same energy, which we 
hereafter set to zero, i.e. ⟨1|𝐻𝐻|1⟩ = ⟨2|𝐻𝐻|2⟩ = 0, where H is the Hamiltonian. The transition 
matrix elements ⟨1|𝐻𝐻|2⟩ = ⟨2|𝐻𝐻|1⟩ = −𝑉𝑉, where V is positive. 

a. Find the eigen-energies and eigenstates of the molecule.
b. When the nitrogen atom is above the plane, the ammonia molecule has an electric dipole

moment +𝜂𝜂, whereas when it is below the plane, the molecule has a dipole moment – 𝜂𝜂.
Thus, denoting the electric dipole operator by P, we have ⟨1|𝑃𝑃|1⟩ = −⟨2|𝑃𝑃|2⟩ = 𝜂𝜂. In
the presence of an electric field E perpendicular to the hydrogen plane, the Hamiltonian
acquires the additional term 𝐻𝐻′ = −𝐸𝐸𝑃𝑃 . Find the new ground state energy and the
corresponding eigenstate of the molecule.

c. Compute the mean-value of the electric dipole moment of the molecule 〈𝑃𝑃〉 in its ground
state and obtain the polarizability of the molecule. Assume a small electric field |𝜂𝜂|𝐸𝐸 ≪
𝑉𝑉.

Problem 5 
A point electric charge q is placed at the distance r from the center of a hollow thin spherical 
metal shell of radius R with r > R. The sphere has total electric charge Q. 

a. Find the force acting on the charge q.
b. How much energy is required to move the point charge q to infinity?
c. Find the force acting on the charge q if the sphere is grounded (instead of having fixed

charge Q), so that its potential is maintained at the same value as at infinity. Any effect of
the grounding wire can be neglected.

Hint: prove that the electric field outside the sphere is equivalent to that of the system, where the 
sphere is replaced by two ‘image’ point charges, one at the center of the sphere and one 
elsewhere on the line between the center and the charge q. You will have to find the position of 
this second image charge and the values of both image charges. 
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