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Part 1 of this exam consists of 10 problems of equal weight.  You will be graded on all 10 
problems. 
 
This is a closed-book examination.  You may use a calculator.  A list of some physical constants 
and properties that you may require is included.  Please take a moment to review its contents 
before starting the examination. 
 
Please put your assigned CODE NUMBER (not your name or student ID) in the UPPER 
RIGHT-HAND CORNER of each piece of paper that you submit, along with the relevant 
problem number in the UPPER LEFT-HAND CORNER. 
 
BEGIN EACH PROBLEM ON A FRESH SHEET OF PAPER, so that no sheet contains 
work for more than one problem. 
 
USE ONLY ONE SIDE of the paper; if you require more than one sheet, be sure to indicate, 
“page 1”, “page 2”, etc., under the problem number already entered on the sheet. 
 
Once completed, all your work should be put in the manila envelope provided, IN ORDER of 
the problem numbers. 



 

Constants Symbols values 

Speed of light in vacuum c 3.00108 m/s 

Elementary charge e 1.6010-19 C 

Electron rest mass me 9.1110-31 kg 

Electron rest mass energy mec2 0.511 MeV 

Permeability constant o 1.2610-6 H/m 

Permeability constant/4π o/4π 10-7 H/m 

Proton rest mass mp 1.6710-27 kg 

Proton rest mass energy mpc2 938 MeV 

Neutron rest mass mn 1.6810-27 kg 

Neutron rest mass energy mnc2 940 MeV 

Planck constant h 6.6310-34 Js 

Gravitational constant G 6.6710-11 m3/s2kg 

Molar gas constant R 8.31 J/molK 

Avogadro constant NA 6.021023 /mol 

Boltzmann constant kB 1.3810-23 J/K 

Molar volume of ideal gas at STP Vm 2.2410-2 m3/mol 

Earth radius RE 6.38106 m 

Earth’s mass ME 5.98×1024 kg 

Earth-Sun distance 1 AU 1.501011 m 

Stirling’s Approximation: ln(N!) = Nln(N) – N + 
(small corrections) 

 



 
1. Consider a very small hill on the Earth’s surface that has the shape of a half sphere with 

radius R. A point on the hill is at the height z = R cos θ (so that the top of the hill is at θ = 0). 
A point mass m can slide on this hill without friction. The mass is initially at the top of the 
hill. At some moment, it receives a very small push in one direction, and it then starts sliding 
towards the bottom of the hill due to gravity. Compute the angle θ at which the mass m loses 
contact with the hill. 

 
2. (i) Find the lowest relativistic correction to the classical kinetic energy of a particle of mass 

m moving with speed v << c.  
 (ii) Using the results of part (i), compute the leading order relativistic correction to the energy 

eigenvalues for a particle of mass m confined in the one dimensional infinite well potential: 

 
  
3. Cold interstellar molecular clouds often contain the molecule cyanogen (CN), whose first 

rotational excited states have an energy 4.7  10−4 eV compared to the ground state.  There 
are three such excited states, all with the same energy.  In 1941, studies of the absorption 
spectrum of starlight that passes through molecular clouds showed that for every 10 CN 
molecules that are in the ground state, three others are in the first excited state.  To account 
for these data, astronomers suggested that the CN molecules might be in thermal equilibrium 
with some “reservoir” with a well-defined temperature. 

(i) Find the partition function Z.  
(ii) What is the temperature T of the reservoir in K? 
(iii) Given your result for T, what is the reservoir? 

 
4. Consider a hydrogen atom located at r = 0. Assume that in addition to the proton Coulomb 

potential, the electron experiences a small short range spherically symmetric potential 
3( ) ( )BU r ua  r , where r is a 3D vector, aB is the Bohr radius, and u is much smaller than the 

ionization energy of the hydrogen atom. Calculate the correction to the energy ħω of the 1s-
2p transition. (This can be a correction for the finite size of the proton in a hydrogen atom). 

 
5. Consider the energy changes of a plane capacitor made of two parallel, horizontal metallic 

plates separated by air for two different cases: 
(i) In the first case, a capacitor with capacitance C1 is charged by a battery to a voltage V and 

then disconnected. The distance between plates is slowly increased by an external force 
doing work A > 0, so that capacitance becomes C2 < C1. What is the change of the 
electrostatic energy U of capacitor during this process? Show that energy is conserved. 

(ii) In the second case, the battery remains connected to the capacitor as the distance between 
the plates is increased. What is the change in the electrostatic energy of the capacitor after 
the same work A is done to change the capacitance from C1 to C2? Show how energy is 
conserved in this case.  What is different in this case from case (i)? 

 



6. The International Space Station is in a circular orbit with an altitude of 500 km above the 
surface of the Earth.   
(i) Calculate the velocity and period of the station’s orbit. 
(ii) Suppose a satellite is launched from the station with a relative velocity of one tenth the 

station’s orbital velocity in the direction of the station’s motion.  Determine the semi-
major axis of the new orbit, as well as the perigee (closest distance to the center of Earth), 
apogee (farthest distance from the center of Earth) and period of the new orbit.  (Hint: the 
semi-major axis is the average of the perigee and apogee). 
 
 

 
7. Consider a “sliding bar” generator made of a 

U-shaped wire with width w and a resistance R 
with the current closed by a movable bar of 
mass M and an initial velocity v0, as shown in 
the figure.  A magnetic field 0 ˆBB = z  points 

out of the page. 
(i) Find the emf generated and the current that 

flows through the circuit.  Draw a diagram 
showing the direction of the current flow. 

(ii) Determine the magnetic force on the bar, 
and solve for its motion. 

(iii) Show that the energy dissipated by the resistor is equal to the kinetic energy lost by the 
bar. 

 
8. In the lab frame, an incoming proton collides with a second proton at rest, giving rise to the 

process 
p + p → p + p + π0 

Such a process can occur only if the energy of the incident proton is above a given threshold 
energy. Compute the threshold energy of the incident proton in the center-of-mass (rest) 
frame, and in the lab frame. Recall that mpc

2 = 938 MeV, and 0

2m c


 = 135 MeV. (Hint: 

Consider using an appropriate relativistic invariant quantity to simplify the algebra). 
 

 
9. In a plasma with equal concentrations of free positive and negative ions, screening modifies 

the Coulomb potential e2/r of a point charge e to the Yukawa form, 2( ) ( / ) exp( )V r e r r  . 
Here r is the distance from the point charge to the observation point and κ is the inverse 
screening radius. 

 (i) Calculate the Fourier transform V (q) of the Yukawa potential. 
 (ii) What is Fourier transform VC(q) of the Coulomb potential? 
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10.  Consider a square box of mass m whose interior surface is 100% reflective.  Each edge of 
the box has a length L and the box lies on a frictionless surface.  One side of the box is 
removed to allow light to enter the box.  A beam from an ideal laser with a wavelength of λ 
and output power P is pointed at a 45o angle from the horizontal towards the opposite corner 
of the box (figure a).  The box gradually moves to the right causing the laser beam to sweep 
across the top of the box (figure b) until the laser no longer points into the box (figure c).  If 
the box starts at rest, what will be the final momentum of the box?  Ignore the small 
influence of the Doppler effect on the light. 
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Part 2 of this exam consists of 5 problems of equal weight.  You will be graded on all 5 
problems. 
 
This is a closed-book examination.  You may use a calculator.  A list of some physical constants 
and properties that you may require is included.  Please take a moment to review its contents 
before starting the examination. 
 
Please put your assigned CODE NUMBER (not your name or student ID) in the UPPER 
RIGHT-HAND CORNER of each piece of paper that you submit, along with the relevant 
problem number in the UPPER LEFT-HAND CORNER. 
 
BEGIN EACH PROBLEM ON A FRESH SHEET OF PAPER, so that no sheet contains 
work for more than one problem. 
 
USE ONLY ONE SIDE of the paper; if you require more than one sheet, be sure to indicate, 
“page 1”, “page 2”, etc., under the problem number already entered on the sheet. 
 
Once completed, all your work should be put in the manila envelope provided, IN ORDER of 
the problem numbers. 



 

Constants Symbols values 

Speed of light in vacuum c 3.00108 m/s 

Elementary charge e 1.6010-19 C 

Electron rest mass me 9.1110-31 kg 

Electron rest mass energy mec2 0.511 MeV 

Permeability constant o 1.2610-6 H/m 

Permeability constant/4π o/4π 10-7 H/m 

Proton rest mass mp 1.6710-27 kg 

Proton rest mass energy mpc2 938 MeV 

Neutron rest mass mn 1.6810-27 kg 

Neutron rest mass energy mnc2 940 MeV 

Planck constant h 6.6310-34 Js 

Gravitational constant G 6.6710-11 m3/s2kg 

Molar gas constant R 8.31 J/molK 

Avogadro constant NA 6.021023 /mol 

Boltzmann constant kB 1.3810-23 J/K 

Molar volume of ideal gas at STP Vm 2.2410-2 m3/mol 

Earth radius RE 6.38106 m 

Earth’s mass ME 5.98×1024 kg 

Earth-Sun distance 1 AU 1.501011 m 

Stirling’s Approximation: ln(N!) = Nln(N) – N + 
(small corrections) 

 



1. In semiconductors, electron states of donors are similar to the hydrogen atom because a 
donor has the same charge as a proton. The only difference is that the Coulomb potential of a 

donor 2( ) /V r e r   contains the dielectric constant κ of the semiconductor and the 
effective electron mass m٭, which is usually much smaller than the free electron mass m. As 
a result, the ground state energy E and the effective Bohr radius a of a hydrogen-like donor 
state is modified from the ground state energy and Bohr radius of a hydrogen atom. 

(i) Determine the ground state energy E for a hydrogen-like donor, and evaluate it for GaAs (κ = 
12.5 and m 0.07 =٭m). 

(ii) Determine the effective Bohr radius a for a hydrogen-like donor and evaluate it for GaAs (κ 
= 12.5 and m0.07 =٭m). Write an expression for the ground state wave function. 

(iii) Now consider a donor located at the surface z = 0 of the semiconductor, which occupies the 
half space z > 0, while for z < 0 there is vacuum. Assume that the electron cannot penetrate 
into the vacuum, so that its wave function vanishes at z = 0. On the other hand, for z > 0 the 
electron is subjected only to the Coulomb potential V(r) = −e2/κr of the donor. Find the 
ionization energy of such a surface donor Es using your knowledge of the wave functions of 
first excited states of the bulk donor hydrogen atom and compare it to that of the bulk donor 
energy E. 

 
2. (i) Show that the moment of inertia of a (one dimensional) 

uniform rod of mass M and length L that rotates about 
one end is 2 / 3I ML .  

(ii) A uniform rod of length L and mass M is falling with 
one end fixed on the ground. Compute the classical 
differential equation governing the time evolution of 
θ(t) (see the figure). Linearize this equation in the limit 
θ << 1. 

(iii) Assume that, at the time t = 0, the rod has a very small initial angle θin and a very small 
initial (positive) angular speed in . Estimate how long it takes the rod to fall by solving 

the linearized equation obtained in (ii) with these initial conditions. Use this equation to 
determine when θ = 1. The time tfall at which this happens is a good estimate for the time 
necessary for the rod to fall, starting with those initial conditions. 

(iv) Classically, one can imagine the rod to be perfectly vertical, and at rest. Quantum 
mechanically, however, this is not possible. From the Lagrangian of the system, 
determine the conjugate variable of the angle θ, and use Heisenberg's uncertainty 
principle to obtain a lower bound on the product in in  . To do so, replace the 

uncertainty in the expectation value for one variable with the corresponding classical 
initial condition (namely, replace ∆θ with θin, and analogously for in ). 

(v) Find the largest possible value for tfall compatible with the lower bound that you have 
found in (iv). 

(vi) Evaluate the result obtained in (v) for M = 50 g and L = 30 cm. 
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3. Consider an AC transmission line consisting of two thin parallel plates with width w (in the y 
direction) and separated by a distance d (in the x direction), with d w  so that fringing 
fields can be neglected.  One plate is grounded, and the other is at a potential given by 

0 cos( )V V kz t  .  A current 0 cos( )I I kz t   flows in the –z direction on the grounded 

plate and in the +z direction on the other plate. 
(a) Determine the electric and magnetic fields in the region between the plates. 
(b) Using Faraday’s Law, determine the relationship between the frequency ω and the wave 

number k, and find the ratio of the magnitudes of E and B.   
(c) Determine the Poynting flux between the plates, and integrate it over the cross section of 

the plates (i.e., the xy plane) to find the total energy flow.  Express this in terms of V0 and 
I0. 

 
4. Consider a system of two coupled pendula, each with mass m and length a, hanging from 

points a distance d apart.  The pendula are coupled by a spring with spring constant k and an 
equilibrium length that is equal to the separation of the pendula.  (That is, the spring is 
relaxed when the pendula are each hanging straight down.).  Consider only motions in the 
plane, and neglect the masses of the rods and the spring.  Find the frequencies of small 
oscillation of this system, and determine the normal modes.  (Hint:  you only need to 
consider the horizontal displacements when considering the potential energy of the spring.) 

  
5.  To explain experimental data on the low temperature 

specific heat of super fluid helium, Landau (1938) 
conjectured that the low-energy spectrum of its Bose 
excitations, ( )p , has a peculiar form, which goes as  

ε(p) = sp for 0p p , reaches a maximum at some p < p0 

and then goes through a minimum at p = p0. Near the 
minimum it can be described by 

2
0( ) ( ) / 2p p p      . Excitations in the first (linear) 

part of the spectrum are called phonons, excitations in the second (parabolic) part are called 
rotons. Later it became known that the sound velocity, s = 239 m/s, ∆/kB = 8.65 K, p0 = 
1.92ħ/Å, where Å is one Ångström, and σ = 0.16mHe, where mHe is the helium atom mass. 
(i) Calculate the phonon contributions to the specific heat per unit volume. Use 

 
(ii) Calculate the roton contributions to the specific heat per unit volume, assuming that 

kBT<< Δ and 2
0Bk T p , so that only a thin spherical shell with radius p0 dominates the 

integration in momentum space.  
(iii) Estimate the temperature where crossover between the phonon and roton contributions 

happens for the parameters given above.  One can proceed analytically by equating both 
contributions, while assuming that Bk T    everywhere except in the exponential factor.  

One can also check that 2
0p ,  (It was observation of this crossover that led Landau 

to his conjecture.) 
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