
Problem	1	
	
If	dust	particles	are	sufficiently	small,	they	will	be	swept	out	of	the	Solar	System	by	
radiation	pressure	from	the	Sun.		Show	that	this	is	true	independently	of	the	
distance	to	the	Sun,	and	calculate	the	critical	radius	for	this	to	happen	to	a	totally	
absorbing	dust	particle	of	density	𝜌 = 0.5	g/cm3.		The	solar	energy	flux	at	the	Earth	
is		𝑆!"# = 1.4 𝑘W/m!.	
	
Problem	2	
	
A	ball	is	thrown	vertically	upward	from	the	ground	at	𝑦 = 0	with	an	initial	speed	v0.		
In	addition	to	the	constant	downward	acceleration	g	exerted	by	gravity,	the	ball	is	
subjected	to	a	drag	force	resulting	in	an	acceleration	of	magnitude	γ	v2	in	the	
direction	opposite	to	v.		Taking	γ	to	be	constant,	to	what	maximum	height	H	will	the	
ball	rise?	Check	your	answer	by	verifying	that	in	the	limit	γ→0	you	recover	the	well-
known	result	for	H	in	the	absence	of	a	drag	force.		Hint:		Express	the	acceleration	v	
as	a	function	of	y	rather	than	t	in	the	equation	of	motion.			
	
Problem	3	
	
A	one-dimensional	harmonic	oscillator	of	frequency	ω	is	prepared	at	time	t	=	0	in	
the	following	linear	combination	of	the	ground	and	first	excited	state	
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Show	that	the	expectation	value	of	the	position	operator	oscillates	when	t	>	0	and	
give	the	frequency	and	amplitude	of	the	oscillation.	
	
Note:		For	the	calculation	of	the	expectation	value	of	𝑥,	recall	that	the	first	excited	
state	results	from	the	application	of	the	creation	operator	𝑎!	to	the	ground-state,	
with	
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Problem	4	
	
When	a	charged	particle	passes	through	a	transparent	medium	at	a	speed	greater	
than	the	phase	velocity	of	light	in	that	medium,	the	so-called	Cherenkov	radiation	is	
emitted	in	the	forward	cone	co-axial	with	the	path	of	the	particle.		Now	consider	the	
following	situation:		Pions	(mass	𝑚!𝑐! = 140 MeV)	and	muons	(mass	𝑚!𝑐! =
106 MeV)	with	the	same	momentum	|p|	=	140	MeV/c	travel	through	a	transparent	
material.		Find	the	range	of	index	of	refraction	of	this	material	over	which	the	muons	
alone	will	emit	Cherenkov	light.	



Problem	5	
	
A	copper	wire	of	length	L	=	1	km	is	connected	across	a	6-volt	battery.		Take	the	
resistivity	and	number	density	of	conduction	electrons	of	copper	to	be	respectively	
𝜌 = 2×10!! ohm∙meter	and	𝑛 = 8×10!" 𝑚!!.		How	long	does	it	take	for	a	
conduction	electron	to	drift	around	the	circuit?	
	
Problem	6	
	
The	temperature	of	10	liters	of	nitrogen	gas	(N!)	held	in	a	rigid	container	and	
originally	at	0	℃	and	atmospheric	pressure	is	raised	to	100	℃	by	placing	it	in	
contact	with	a	very	large	reservoir	at	100	℃.	What	are	the	resulting	changes	in	
entropy	in	J/K	(a)	of	the	nitrogen	gas	and	(b)	of	the	gas	and	reservoir	together.	
	
Problem	7	
	
A	positron	𝑒!	moving	along	the	x-axis	with	kinetic	energy	1.00	MeV	collides	with	an	
electron	𝑒!	at	rest,	resulting	in	the	creation	of	a	pair	of	photons	in	the	process	
𝑒!𝑒! → 𝛾𝛾.		Positrons	and	electrons	are	each	other’s	antiparticles	and	have	the	
same	mass	𝑚!𝑐! = 0.51 MeV.	In	this	case,	both	photons	come	out	with	the	same	
energy	𝐸! .			Find	the	energy	and	momentum	𝐸!	and	𝑝!	of	each	photon	(in	MeV	and	
MeV/c	respectively)	as	well	as	the	angles	with	respect	to	the	x-axis	at	which	the	
photons	are	emitted.		
	
Problem	8	
	
Consider	a	particle	of	mass	𝑚 moving	in	the	following	one-dimensional	potential	
(the	“half-harmonic	oscillator”)	
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What	are	the	energies	and	eigenstates	for	this	system?		In	particular,	what	are	the	
ground	state	and	the	first	excited	state	energies?			
	
Note	that	you	are	not	expected	to	solve	the	Schrödinger	equation	here	–	rather,	state	
your	answers	and	justify	them.		Recall	that	the	eigenstates	of	the	usual	simple	
harmonic	oscillator	(defined	over	the	entire	interval	−∞ < 𝑥 < ∞) are	given	by		
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Here,	 𝐶! 	is	a	normalization	constant	and	the	functions	𝐻!(𝑥)	are	Hermite	
polynomials	of	order	𝑛.		Hint:		Consider	what	boundary	condition	must	hold	at	𝑥	=	0.			



Problem	9	
	
An	electric	charge	distribution	produces	an	electric	field	
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where	q	is	some	charge	and	𝑎	is	a	constant	with	units	of	length.		Find	the	net	charge	
contained	within	the	radius	𝑟 = 𝑎.	
	
Problem	10	
	
Nuclear	reactors	produce	a	lot	of	electron	antineutrinos	as	a	result	of	the	rapid	beta	
decay	of	neutron-rich	fission	products.		Each	fission	reaction	produces	about	200	
MeV	of	energy	and	an	average	of	2.5	antineutrinos	that	are	so	weakly	interacting	
that	their	mean	free	path	in	the	material	of	a	suitable	detector	is	about	5 ×10!"	
meters.	Nevertheless,	experiments	are	underway	that	do	detect	these	antineutrinos!	
	
Estimate	how	many	antineutrinos	will	be	detected	per	day	in	the	above	detector	
(assumed	to	have	an	efficiency	of	30%)	in	the	shape	of	a	cube	of	side	L	=	1	meter	
that	is	placed	a	distance	D	=	25	meters	away	from	the	core	of	a	reactor	producing	
thermal	energy	at	the	rate	of	1	GW.		
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	



Problem	1	
	
If	the	Solar	System	were	immersed	in	a	uniformly	dense	spherical	cloud	of	dark	
matter,	objects	within	would	experience	a	net	gravitational	potential	from	both	the	
Sun	and	the	dark	matter	of	the	form	
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(a)	Using	plane	polar	coordinates	(𝑟,𝜑),	write	down	the	Lagrangian	for	an	object	of	
mass	m	moving	in	this	potential	and	derive	the	resulting	equations	of	motion,	
identifying	all	conserved	quantities.		In	particular,	write	down	the	equivalent	one-
dimensional	equation	of	motion	for	𝑟.	
	
(b)	Find	the	condition	under	which	the	object	will	move	in	a	circular	orbit	of	radius	
R.		You	need	not	solve	for	R	!	
	
(c)	Find	the	frequency	𝜔 for	small	radial	oscillations	𝛿𝑟	of	the	object	in	a	nearly	
circular	orbit	in	terms	of	R	and	the	potential	parameters	k	and	b.	
	
	
Problem	2	
	
Consider	two	observable	(Hermitian)	operators	𝐴 and 𝐵 in	a	three-dimensional	
Hilbert	space.		In	the	basis	
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the	observables	are	represented	by	the	matrices	
	

𝐴 = 𝑎
1 0 0
0 2 0
0 0 6

 ,   𝐵 = 𝑏
−1 0 0
0 0 2
0 2 0

	

	
(a)	Show	that	the	observables	𝐴	and	𝐵	are	not	compatible,	that	is	they	do	not	admit	
a	common	set	of	eigenstates.	
	
(b)	Find	the	eigenvalues	and	corresponding	normalized	eigenstates	of	the	
observables	𝐴	and	𝐵.	
	
(c)	What	are	the	possible	outcomes	and	the	corresponding	probabilities	of	separate	
(independent)	measurements	of	𝐴	and	𝐵	in	the	state	 𝜒 = !

!
 2 − 3 .	

	



(d)	What	are	the	possible	outcomes	and	the	corresponding	probabilities	of	a	
measurement	of	𝐵	that	follows	a	measurement	of	𝐴	if	the	system	is	initially	in	the	
state	 𝜒 	of	part	(c).			
	
(e)	Same	question	as	in	(d),	except	now	when	a	measurement	of	𝐴	follows	a	
measurement	of	𝐵.	
	
	
Problem	3	
	
Three	spin-1/2	atoms	with	spin	operator	𝒔! 	(i=1,2,3)	sit	at	the	corners	of	an	
equilateral	triangle	with	their	mutual	interactions	described	by	the	Hamiltonian	
	

𝐻 =
𝜆
3 (𝒔! ∙ 𝒔𝟐 + 𝒔! ∙ 𝒔! + 𝒔! ∙ 𝒔!)	

	
(a)	List	the	possible	values	of	the	total	spin	𝑆	for	this	system	as	well	as		the	
corresponding	degeneracies	for	each	state	of	given	S	.	
	
(b)	Write	the	Hamiltonian	in	terms	of	the	total	spin	𝑺 = 𝒔! + 𝒔! + 𝒔!	and	find	the	
corresponding	eigenvalues	of	the	energy	of	the	system.	
	
(c)	Write	down	the	canonical	partition	function	Z	at	finite	temperature	T	and	obtain	
the	internal	energy	of	this	system.	
	
	
Problem	4	
	
In	the	𝑥!-𝑦′plane	of	an	inertial	frame	𝑆′,	a	rod	of	proper	length	𝐿! is	at	rest,	inclined	
at	an	angle	𝜃!	with	respect	to	the	𝑥′	axis.		The	rod	is	moving	with	velocity	v = β 𝑐	
with	respect	to	an	observer	at	rest	in	inertial	frame	S	whose	𝑥-axis	points	in	the	
direction	of	the	𝑥′	axis	of	𝑆′.	
	
(a)	Determine	the	length	L	of	the	rod	as	measured	by	the	stationary	observer	in	S	in	
terms	of	𝐿! and 𝜃!.	Verify	that	your	expression	reduces	to	the	expected	results	when	
𝜃!	takes	on	the	values	0° and 90°.	
	
(b)	Determine	the	angle	𝜃	the	rod	makes	with	respect	to	the	𝑥	axis	in	S.	
	
(c)	Numerically,	what	are	𝐿 and 𝜃	if		𝐿! = 1 𝑚,  𝜃! = 45° and β = 0.6 ?	
 
 
	
	
	



Problem	5	
	
A	circular	loop	of	radius	a	lies	in	the	x-y	plane	with	its	center	at	the	origin	of	
coordinates.		It	carries	a	uniformly	distributed	total	charge	Q	so	that	its	charge	
density	(per	unit	volume)	can	be	expressed	as	𝜌 𝒓 = !

!!"
 𝛿 𝑠 − 𝑎  𝛿(𝑧)	,	where	

𝒓 = 𝑠 𝒔+ 𝑧𝒛	in	cylindrical	coordinates	with	𝒔 = 𝒙 cos𝜑 + 𝒚 sin𝜑.	
	
(a)	Calculate	the	resulting	scalar	potential	𝜙 𝒓 	exactly	at	any	point	𝒓 = (0,0, 𝑧)	on	
the	symmetry	axis	of	the	loop.	
	
For	distances	𝑟 ≫ 𝑎,	the	scalar	potential	can	be	expanded	in	multipoles,	
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(b)	Expand	the	exact	expression	for	𝜙 0,0, 𝑧 	in	powers	of	1/	|z|	and	identify	the	
relevant	components	of	the	dipole	(𝑝!)	and	quadrupole	 𝑄!" 	moments.	
	
(c)	Verify	and	extend	your	findings	in	part	(b)	by	calculating	all	the	components	of	
the	dipole	and	quadrupole	moments	of	the	charged	loop.	
	
It	may	be	helpful	to	recall	here	the	expression	for	the	quadrupole	moment,	
	

𝑄!" = 𝑑!𝑟  𝜌 𝒓  (3𝑟!𝑟! − 𝑟!𝛿!")	

	
	


