
Problem	1	
	
The	potential	energy	function	of	a	particle	of	mass	m	moving	along	the	x-axis	is		

𝑉 𝑥 =
𝑐𝑥

𝑥! + 𝑎!	

	where	c	and	a	are	positive	constants.	First,	sketch	V	as	a	function	of	x	and	then,			

(a)	Find	the	position	of	stable	equilibrium,	and	the	period	of	small	oscillations	about	
this	position.		

Given	that	the	particle	starts	from	this	point	 with	velocity	v	to	the	right,		

(b)	Find	the	ranges	of	values	of	v	for	which	it	(1)	oscillates,	(2)	escapes	to	−∞,	and	
(3)	escapes	to	+∞.  	

Problem	2	
	
The	radiant	flux	of	sunlight	on	the	Earth’s	surface	at	midday	is	approximately	1	
kW/m2.	
	
(a)	What	is	the	corresponding	(rms)	magnitude	of	the	magnetic	field	strength	in	
Tesla?	
	
(b)	What	is	the	radiation	pressure	on	a	mirror	lying	on	the	ground	(in	Pa)?	
	
Problem	3	
	
A	batch	of	1000	components	of	the	same	type	for	use	in	the	DUNE	neutrino	detector	
is	believed	to	include	5%	which	are	faulty.	
	
(a)	If	5	components	are	selected	at	random,	what	is	the	probability	that	no	defective	
component	will	be	chosen?	
	
(b)	What	is	the	probability	that	exactly	2	out	of	the	5	will	be	defective?	
	
Problem	4	
	
The	Moon’s	mass	and	radius	are	0.0123	𝑀! 	and	0.273	𝑅! 	(E	=	Earth).	For	Jupiter	the	
corresponding	figures	are	318	𝑀! 	and	11.0	𝑅! .	Find	in	each	case	the	gravitational	
acceleration	at	the	surface,	and	the	escape	velocity	in	SI	units.	
	
	
	
	



Problem	5	
	
A	steady	current	density	𝐉	gives	rise	to	a	time-independent	magnetic	field	𝑩 =
2𝑥𝑦 𝑎 𝒙+  𝑦! 𝑏 𝒚,	where	a	and	b	are	constants	in	appropriate	SI	units	(T/m2).	
		
(a)	How	are	a	and	b	related?	
	
(b)	What	is	the	current	density	J	?	
	
Problem	6	

The	starship	Enterprise	goes	to	a	planet	in	a	star	system	far	away	with	a	speed	of	
0.9c,	spends	6	months	on	the	planet,	and	comes	back	with	a	speed	of	0.95c.	The	
entire	trip	takes	5	years	for	the	crew.		

(a)	How	far	(in	light-years)	is	the	planet	according	to	Earth	observers?		

(b)	How	long	(in	years)	did	it	take	the	crew	(that	is,	by	starship	time)	to	get	to	the	
planet?		

(c)	How	long	(in	years)	did	the	entire	trip	take	for	the	Earth	observers?	
	
Problem	7	
	
Consider	a	simple	model	in	which	the	planets	act	like	black	bodies,	re-radiating	in	
equilibrium	the	energy	they	receive	from	the	Sun.	If	in	such	a	model	the	surface	
temperature	of	the	Earth	is	predicted	to	be	281	K	(ignoring	atmospheric	effects),	
what	is	the	predicted	surface	temperature	of	Mars	whose	orbit	around	the	Sun	has	a	
radius	of	about	1.52	AU?		Recall	that	1	AU	is	the	Earth-Sun	distance.		
	
Problem	8	
	
The	electron	in	a	hydrogen	atom	is	in	a	state	described	by	the	following	
superposition	of	normalized	energy	eigenstates	𝑢,	with	real	A	>	0,		
	

𝜓 𝑟,𝜃,𝜑 =
1
5 (3𝑢!"" + 𝐴𝑢!"" − 2𝑢!"!! + 3𝑢!"#)	

where	the	subscripts	represent	the	quantum	numbers	{𝑛, ℓ,𝑚ℓ}.		

(a)	Calculate	A	such	that	this	wavefunction	is	normalized.		

(b)	Find	the	expectation	value	of	the	energy	in	this	state,	in	terms	of	the	ground	
state	energy	of	hydrogen	𝐸!.		



(c)	Find	the	expectation	values	of	𝐿!	and	𝐿!	in	this	state. 	

Problem	9	

A	typical	neutron	star	has	approximately	the	same	mass	as	the	sun	but	is	as	dense	as	
a	proton	(of	radius	10!!" m).	Estimate,	in	order	of	magnitude,	the	radius	of	a	
neutron	star	(in	km)	and	the	gravitational	binding energy released in its formation 
(in	Joules).	How	does	this	compare	with	the	Sun’s	rest	energy	(that	is,	𝑀!"#𝑐!)?	

	

Problem	10	

One	mole	of	an	ideal	monoatomic	gas	undergoes	a	process	for	which	the	relation	
between	pressure	and	volume	is	𝑝 = 𝑝! + 𝑎/𝑉	where	𝑝!	and	a	are	positive	
constants.	The	gas	expands	from	an	initial	volume	𝑉! to	a	final	volume	𝑉!.	Find 

(a)	the	change	in	the	internal	energy	∆𝑈	of	the	gas	
	
(b)	the	work	W	done	by	the	gas	on	its	surroundings,	and	
	
(c)	the	amount	of	heat	𝑄!"	transferred	to	the	gas	by	its	surroundings.	
	

	
	

	

	

	

	

	

	

	

	

	



Problem	1	
	
If	the	Solar	System	were	immersed	in	a	uniformly	dense	spherical	cloud	of	dark	
matter,	objects	within	would	experience	a	net	gravitational	potential	energy	from	
both	the	Sun	and	the	dark	matter	of	the	form	

𝑉 𝑟 = −
𝑘
𝑟 +

1
2 𝑏𝑟

!	
	

(a)	Using	plane	polar	coordinates	(𝑟,𝜑),	write	down	the	Lagrangian	for	an	object	of	
mass	m	moving	in	this	potential	and	derive	the	resulting	equations	of	motion,	
identifying	all	conserved	quantities.		In	particular,	write	down	the	equivalent	one-
dimensional	equation	of	motion	for	𝑟.	
	
(b)	Find	the	condition	under	which	the	object	will	move	in	a	circular	orbit	of	radius	
R.		You	need	not	solve	for	R	!	
	
(c)	Find	the	frequency	𝜔 for	small	radial	oscillations	𝛿𝑟	of	the	object	in	a	nearly	
circular	orbit	in	terms	of	R	and	the	potential	parameters	k	and	b.	
	
Problem	2	
	
Consider	the	sum	𝑬 = 𝑬𝟏 + 𝑬𝟐	of	the	electric	fields	of	two	oppositely	traveling	
electromagnetic	waves	
	

𝑬𝟏 = 𝒙 𝐸𝟎 cos 𝜔𝑡 − 𝑘𝑧  ,	𝑬𝟐 = 𝒙 𝐸𝟎 cos 𝜔𝑡 + 𝑘𝑧  	
	

(a)	Show	that	this	corresponds	to	a	standing	wave	and	obtain	the	corresponding	
magnetic	field.	
	
(b)	What	are	the	energy	density	and	Poynting	vector	for	this	standing	wave?	
	
(c)	Find	the	time-averaged	expressions	for	the	energy	density	and	Poynting	vector	
for	this	standing	wave.	
	
Problem	3	
	
Consider	the	quantum	mechanical	problem	of	two	identical	non-relativistic	
particles,	each	of	mass	m	and	spin	1/2,	confined	to	a	one-dimensional	infinite	
square	well	of	width	L	(that	is,	𝑉 = 0 for 0 < 𝑥 < 𝐿 and 𝑉 → ∞ everywhere	else).		In	
the	first	part	of	the	problem	the	particles	are	not	mutually	interacting.			
	

	

	



Note:	For	a	single	particle	of	mass	m,	the	normalized	eigenfunctions	and	
corresponding	energies	are	given	by	

𝜓! 𝑥 =
2
𝐿  𝑠𝑖𝑛

𝑛𝜋𝑥
𝐿 ,     𝐸! =

ℏ!𝑛!𝜋!

2𝑚𝐿! 	

(a)	Write	down	the	three	lowest	energy	eigenstates	of	the	system	which	are	also	
eigenstates	of	total	spin,	including	both	the	spatial	and	spin	parts	(denoted	by	
|𝑆, 𝑆! )	of	the	wave	functions,	bearing	in	mind	their	symmetry	properties.	Give	the	
energy	of	each	state	and	make	an	energy	diagram	indicating	the	energies	and	
degeneracies.		

(b)	Now	introduce	an	interaction	between	the	particles	V(x1	–x2)	=	λ	δ(x1	–x2).		Find	
the	resulting	shifts	in	the	energies	of	the	states	found	in	part	(a)	in	first	order	
perturbation	theory	in	λ.		Indicate	how	the	energy	levels	are	shifted	in	a	diagram	as	
in	(a).	

Problem	4	
	
Grand-unified	theories	in	particle	physics	generically	predict	that	the	proton	will	
decay.	The	proposed	Hyper-Kamiokande	experiment	in	Japan	consists	of	cylindrical	
tanks	each	containing	ultra-pure	water	which	are	lined	with	ultra-sensitive	photo	
sensors	to	detect	the	Cerenkov	light	produced	by	the	proton	decay	products.		
	
	(a)	The	tanks	at	the	Hyper-Kamiokande	experiment	will	contain	260,000	metric	
tons	(1	metric	ton	=	1000	kg)	of	water.	If	the	mean	proton	lifetime	is	2×10!"	years,	
how	many	decays	would	you	expect	to	observe	in	one	year?	Assume	that	the	
detector	is	100%	efficient	and	that	protons	bound	in	nuclei	and	free	protons	decay	
at	the	same	rate.		
	

(b)	A	possible	proton	decay	channel	is	p	→	πo	+	e+,	where	πo	is	a	neutral	pion	and	
e+	is	a	positron.	Calculate	the	positron	energy	(in	MeV)	if	the	proton	decays	at	rest.	
How	does	the	positron	speed	compare	to	the	speed	of	light	in	water	whose	
refractive	index	is	n	=	1.33?		The	πo	mass	is	𝑚! =	135	MeV/c2	.	The	positron	mass	
𝑚! =	0.511	MeV/c2			is	so	much	smaller	than	either	of	the	proton	or	pion	masses	
that	you	may	set	it	to	zero	for	this	problem.			

(c)	The	πo	immediately	decays	in	flight	to	two	photons	(in	10−16	sec),	πo	→	γ	+	γ.	
What	are	the	minimum	and	maximum	photon	energies	(in	MeV)	to	be	expected	
from	a	proton	decaying	at	rest?		(Hint:	What	is	the	corresponding	configuration	of	
final	photon	momenta?)	



	

Problem	5	

Consider	a	one-particle	system	capable	of	three	states	(𝜀! = 𝑛Δ,	n	=	0,	1,	2)	in	
thermal	contact	with	a	reservoir	at	temperature	T.		Find	each	of	the	following	
quantities	in	terms	of	∆ and 𝑇 and	obtain	their	values	in	the	limits	kBT/∆	→	∞	and	
kBT/∆	→	0	:	

(a)	the	internal	energy.		

(b)	the	free	energy.		

(c)	the	heat	capacity.		

	


