
Problem	1	
	
A	useful	picture	of	the	Earth’s	magnetic	field	is	that	of	a	dipole	(like	a	bar	magnet)	
through	its	center,	tilted	at	an	angle	of	11°	with	respect	to	the	Earth’s	rotational	axis.		
While	it	varies	by	location,	a	reasonable	average	value	for	the	surface	magnitude	of	
the	field	is	𝐵! =	𝐵 𝑅 ≅ 25 𝜇T,	with	R	the	Earth’s	radius.	Use	this	information	to	
estimate	the	total	energy	(in	Joules)	in	the	external	 𝑟 ≥ 𝑅  magnetic	field	of	the	
Earth.		
	
	
Problem	2	
	
The	wave	function	of	a	quantum	particle	that	is	free	to	move	in	one	dimension	is	
given	by	
	

𝜓 𝑥 =  
1
2𝑎   ,   𝑥 ≤ 𝑎   	

	
and	𝜓 𝑥 = 0 for 𝑥 > 𝑎.		Find	the	corresponding	momentum	probability	
distribution	(normalized	to	its	value	at	𝑝 = 0)	and	show	that	the	probability	of	
finding	the	particle	with	momentum	𝑝 = ℏ𝜋/2𝑎	relative	to	the	probability	of	zero	
momentum	is	4/𝜋!.	
	
	
Problem	3	
	
Four	electric	charges	are	placed	as	shown	in	the	figure.	
As	the	total	charge	is	zero,	there	is	no	monopole	moment.		
	
(a)	Find	the	electric	dipole	moment	p	of	this	charge	
distribution	and	the	corresponding	leading	term	for	the	
electrostatic	potential,	valid	far	from	the	origin.	
	
(b)	What	is	the	corresponding	leading	term	for	the	
electric	field	at	points	(1)	𝒓 = 𝑧 𝑧	(on	the	z-axis)	and	(2)	
𝒓 = 𝑦 𝑦	(on	the	y-axis),	valid	far	from	the	origin?	
	
	
	
	
	
	
	
	
	

1.5 Electric dipole moment

Four charges are placed as shown. Calculate

the electric dipole moment of the distribution

and find an approximate formula for the po-

tential, valid far from the origin (use spherical

coordinates).

Since the total charge is 0, the monopole term is also 0. The dipole term in the

expansion of the potential is given by:

V
1

(r) =
1

4⇡✏
0

p · r̂
r2

,

(equation 1.37 from the lecture notes) where r is the position vector, r̂ is the unit

vector along the radial direction in spherical coordinates and p is the electric dipole

moment. We have:

p =
X

i

qir
0
i,

where r0i denotes the position of the charge qi. Since the total charge is 0, p does

not depend on the choice of the origin from which we measure the positions. We use

O as the origin. Then we have:

p = (3qa� qa)ẑ+ (�2qa+ 2qa)ŷ = 2qaẑ,

where ẑ and ŷ are unit vectors. Therefore:

V (r) ' V
1

(r) =
1

4⇡✏
0

2qa cos ✓

r2
,

where we have used ẑ · r̂ = cos ✓.
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Problem	4	
	
A	particle	of	mass	m	travelling	at	a	speed	u	collides	with	a	stationary	particle	of	
equal	mass	and	they	combine	to	form	a	new	particle.			
	
(a)	Calculate	the	speed	V	and	mass	M	of	the	new	particle,	expressing	your	result	in	
terms	of	m,	u	and	𝛾! = 1/ 1− 𝑢!/𝑐!.			
	
The	new	particle	subsequently	breaks	up	into	two	particles,	each	of	mass	𝛼𝑚.		
	
(b)	Obtain	the	magnitude	of	the	three-momentum	of	each	particle	in	the	rest	frame	
of	the	decaying	particle	of	mass	𝑀	and	deduce	the	maximum	value	of	𝛼	again	in	
terms	of	u	and	𝛾!.			
	
	
Problem	5	
	
The	energy	levels	of	the	atoms	of	a	certain	substance	are	uniformly	separated	by	an	
amount	∆𝜖 = 3.20×10!!" J	so	that	they	are	given	by	
	

𝜖! = 𝜖! + 𝑛 ∆𝜖	
	

with	integer	𝑛 ≥ 0.	There	is	no	degeneracy.			
	
What	fraction	of	the	atoms	are	then	in	the	ground	state	(𝑛 = 0)	when	the	
temperature	of	the	substance	is	(a)	𝑇 = 300 K,	and	(b)	T= 1000 K?			
	
	
Problem	6	
	
A	circular	track	of	mass	M	and	radius	R	(as	shown)	is	at	rest	on	top	of	a	frictionless	
surface.		The	top	of	the	track	is	perpendicular	while	its	bottom	is	horizontal.		A	small	
block	of	mass	m	(whose	size	you	can	ignore)	is	released	from	rest	at	the	top	of	the	
track.	When	the	block	leaves	the	bottom	of	the	track,	what	are	the	respective	
velocities	v	and	V	of	the	block	and	the	track?	
		

																																																																																					 	
	
	
	

Short 1 (Mechanics). A circular track of mass M is at rest on top of 

frictionless surface. The top of track is perpendicular, and bottom of 

track is horizontal. A small block (of mass m, ignore size) is released 

from rest. When the block leaves the track, what is the velocity of the 

block and the track? 

Long 1 (Mechanics). A rigid rope (constant length) with negligible mass 

goes through a hole in a frictionless surface. The two ends of the rope 

have point mass m1 (on the surface) and m2 (hanging) attached to it. m1 

is initially undergoing uniform circular motion while m2 is at rest. Now 

giving m1 a small impulse along the radial direction, prove that the 

subsequent motion is harmonic oscillation, and find its frequency.  

                                                                                                                      
Short 2 (Electromagnetism). An infinitely long cylindrical metal (of 

radius R, central axis being z axis) is grounded. A parallel 1D wire with 

uniform 1D charge density λ is located at (a, 0, z). Find electrostatic 

potential eve  

 

 

Long 2 (Electromagnetism). A dipole pf is placed at the center of a 

spherical dielectric material (dielectric constant of ε1) , which is 

surrounded by another dielectric material (dielectric constant of ε2). 

Find electrostatic potential everywhere, and the bound charge at the 

dielectric interface.  

Short 3 (Quantum). A particle with mass m is in a confinement potential 

of V(x) = - V0δ(x), where V0 is positive constant and δ(x) is Dirac function. 

Find eigen-energy. 

Long 3. (Quantum). Consider 1D potential shown to the left. (1) For 

electron with E<0, and V0 < -E, is there a solution? If no, elaborate why. 

If yes, give bond state wavefunction. (2) For electron with E<0, and V0 > 

-E, is there a solution? If no, elaborate why. If yes, give bond state 

wavefunction. (3) For electron wave (with E>0) incident at the boundary 

at x =a (from x>a, and reflected to x>a), what is the phase shift (of 

electron wavefunction) between the incident and reflected electron? 

Short 4. (Thermal and Statistics). An object with heat capacity of cp and 

initial temperature Ti gets in contact with a heat source of temperature 

Tf (while under constant pressure). Find change of system entropy. 

 

                                                            Long problem 4 is on the next page >>> 

 

 

 

 

 



Problem	7	
	
In	the	Stern-Gerlach	experiment,	silver	atoms	are	passed	through	an	
inhomogeneous	magnetic	field	separating	those	in	a	spin-up	state	from	those	in	a	
spin-down	state,	and	two	detectors	measure	the	respective	number	of	atoms	in	each	
state.		In	repeating	this	experiment,	you	wish	to	determine	whether	your	sample	of	
atoms	is	already	partially	polarized,	with	an	excess	of	atoms	in	one	spin-state	
relative	to	the	other.		Unfortunately,	your	source	is	not	producing	many	atoms.	
		
You	detect	13	atoms	in	total,	of	which	12	are	in	the	spin-up	state	and	1	is	in	the	spin-
down	state.		Assuming	there	is	no	net	polarization	in	your	sample,	what	is	the	
probability	of	observing	this	final	count?		
	
	
Problem	8	
	
Two	moles	of	a	monoatomic	ideal	gas	are	at	a	temperature	𝑇 = 300 𝐾.		The	gas	
expands	reversibly	and	isothermally	to	twice	its	original	volume.		Calculate		
	
(a)	The	work	done	by	the	gas	(in	J)	
	
(b)	The	heat	supplied	to	the	gas	(in	J)	
	
(c)	The	change	in	the	internal	energy	of	the	gas	(in	J)	
	
(d)	The	change	in	entropy	of	the	gas	(in	J/K)	
	
	
Problem	9	
	
Consider	the	following	time-independent	wavefunction	
	

	𝜓 𝒓 = 𝑥 + 𝑦 + 3𝑧  𝑓(𝑟) 	
	

in	which	𝑓(𝑟)	need	not	be	specified	further,	other	than	it	being	a	function	of	
𝑟 = 𝑥! + 𝑦! + 𝑧!	only.	
	
(a)	Verify	by	explicit	calculation	that	𝜓 𝒓 	is	not	an	eigenstate	of	either	one	of	the	
three	𝐿! , 𝐿! or 𝐿! .	
	
(b)	Show	that	𝜓 𝒓 	is	in	fact	an	eigenstate	of	𝐿!	and	find	the	corresponding	quantum	
number	ℓ.	
	
(c)	Since	𝜓(𝒓)	is	an	eigenstate	of	𝐿!,	it	will	also	be	an	eigenstate	of	𝑛 ∙ 𝑳	with	
eigenvalue	ℏ𝑚 for	some	unit	vector	𝑛 = 𝒏/ 𝒏 .		What	are	𝑚 and 𝑛?	



	
	
Problem	10	
	
The	binary	stellar	system	X	consists	of	two	objects	orbiting	about	their	common	
center-of-mass	under	the	influence	of	their	mutual	gravitational	attraction.	One	of	
the	objects	is	a	blue	supergiant	star	with	a	mass	𝑀!" = 25 𝑀!	while	the	other	is	a	
black	hole	candidate,	with	a	mass	𝑚!" = 10 𝑀!, where	𝑀!	is	the	mass	of	the	Sun.		
The	orbital	period	of	motion	is	𝑇! =	5.6	days.			
	
Assuming	that	the	orbits	of	both	objects	are	circular,	that	is,	their	relative	distance	
remains	constant,	make	a	sketch	of	this	system	and	from	the	information	given,	
determine	the	orbital	radii	𝑅!" 	and	𝑅!" 	(in	AU)	of	the	supergiant	star	and	black	
hole,	respectively.		Note:		1	AU	=	1	Astronomical	Unit	=	Earth-Sun	distance.	
	
	



Problem	1	
	
A	pendulum	consisting	of	a	rigid	rod	of	length	ℓ	
(assumed	massless)	to	which	is	attached	a	mass	𝑚,	
performs	oscillations	in	the	x-y	plane,	with	y	as	the	
vertical	direction.	In	addition,	the	point	of	suspension	A	
of	the	pendulum	moves	with	an	(externally	
determined)	constant	acceleration	𝑎	in	the	𝑥-direction	
so	that	its	coordinates	are	(𝑥!,𝑦!) =

!!!

!
, 0 , as	seen	in	

the	figure	which	also	shows	the	gravitational	
acceleration	𝑔 pointing down.	
	
(a)	Write	down	the	Lagrangian	for	this	system	using	the	
angle	𝜃	as	the	generalized	coordinate.		As	a	result	of	the	motion	of	the	point	of	
suspension,	the	Lagrangian	will	be	explicitly	time-dependent	while	the	Euler-
Lagrange	equations	still	hold.	
	
(b)	Write	down	the	Euler-Lagrange	equation	of	motion	for	𝜃	and	determine	its	
equilibrium	value	𝜃!.		
	
(c)	Determine	the	frequency	of	small	oscillations	about	the	equilibrium	point	𝜃!	as	a	
function	of	𝑔 and 𝑎.		What	happens	in	the	limit	𝑎 → 0	?	
	
	
	
Problem	2		
	
Consider	the	one-dimensional	motion	of	a	quantum	mechanical	particle	of	mass	𝑚	
in	the	potential	(with	𝑉! > 0),	
	

𝑉 𝑥 =   
0  for 𝑥 < −𝑎  (region I)

−𝑉!  for − 𝑎 < 𝑥 < 0  (region II)
+∞  for  𝑥 > 0  (region III)

			

	
Suppose	a	beam	of	particles	of	energy	𝐸 = ℏ!𝑘!/2𝑚	is	incident	on	this	potential	
from	𝑥 = −∞.			
	
(a)	Write	down	the	wave	functions	in	the	three	regions	listed	above	and	clearly	state	
the	continuity	conditions	that	hold	at	the	region	boundaries.			
	
(b)	Obtain	an	expression	for	the	coefficient	of	the	reflected	wave	relative	to	that	of	
the	incident	one	in	region	I.		What	is	the	magnitude	of	this	ratio?	
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Figure 2.2: Pendulum with accelerated point of suspension

with the corresponding velocities

ẋ = l ˙✓ cos ✓ + at

ẏ = l ˙✓ sin ✓ (2.33)

2. The potential energy is

V = �mgl cos ✓ (2.34)

and the kinetic energy is

T =

1

2

m(ẋ2 + ẏ2)

=

1

2

m(l2 ˙✓2 + 2atl ˙✓ cos ✓ + a2t2) (2.35)

This gives the following expression for the Lagrangian

L =

1

2

m(l2 ˙✓2 + 2atl ˙✓ cos ✓ + a2t2) +mgl cos ✓ (2.36)

As expected it depends on the generalized coordinate ✓, its velocity ˙✓ and also explicitly on
time t. The time dependence follows from the (externally determined) motion of the point of
suspension.

3. Lagrange’s equation has the standard form

d

dt

✓
@L

@ ˙✓

◆
� @L

@✓
= 0

(2.37)

and can be expressed as a differential equation for ✓ by evaluating the partial derivatives of L
with respect to ✓ and ˙✓,

@L

@✓
= �ma t l ˙✓ sin ✓ �mg l sin ✓

@L

@ ˙✓
= ml2 ˙✓ +ma t l cos ✓ (2.38)



Problem	3	
	
A	standing	electromagnetic	wave	with	electric	field	𝑬 𝑥, 𝑡 = 𝑬! cos 𝑘𝑥 ∙ cos𝜔𝑡	is	
sustained	in	vacuum	in	a	source-free	region	along	the	𝑥-axis,	where	𝑬!	is	a	constant	
vector.	
	
(a)	What	can	you	say	about	the	components	of	𝑬𝟎?	Find	the	corresponding	magnetic	
field	𝑩(𝑥, 𝑡).	
(b)	Calculate	the	Poynting	vector	𝑺 and	the	energy	density	u	for	this	electromagnetic	
wave	and	verify	that	they	satisfy	the	local	energy	conservation	equation.		
(c)	Find	the	time	averages	of	the	Poynting	vector	and	energy	density	over	one	
oscillation	period.	
	
Problem	4	
	
A	spaceship	(SS)	moves	away	from	Earth	(E)	at	a	speed	𝑣 = 𝛽𝑐	and	releases	a	
shuttle	craft	(SH)	in	the	forward	direction	(say,	the	x-direction)	at	a	speed	𝑣	relative	
to	the	spaceship.		In	turn,	the	pilot	of	the	shuttle	craft	launches	a	probe	(PR),	again	in	
the	same	forward	direction,	at	a	speed	𝑣	relative	to	the	shuttle	craft.	
	
(a)	Determine	the	speed	v!" E  of	the	shuttle	craft	relative	to	the	Earth.	
(b)	Determine	the	speed	v!" E  of	the	probe	relative	to	the	Earth	
(c)	What	do	you	expect	the	speed	of	the	probe	relative	to	the	Earth	to	be	in	the	
limits	𝛽 ≪ 1	and	𝛽 → 1?		Verify	that	the	result	you	found	in	part	(b)	correctly	
reproduces	your	expectation	in	both	of	these	limiting	cases.	
	
	
Problem	5	
	
The	possible	states	of	a	system	are	distributed	in	energy	according	to	the	so-called	
“Hagedorn	spectrum”,	with	𝐸 ≥ 0,	
	

𝑑𝑛
𝑑𝐸 = 𝛼 𝐸! exp (𝛽!𝐸)	

	
where	𝛽! = 1/𝐸! 	and	𝐸! is	some	energy	scale	which	is	often	expressed	in	terms	of	
the	“Hagedorn	temperature”		𝑇! = 𝐸!/𝑘	.		This	type	of	exponential	spectrum	may	
describe	the	strongly	interacting	particles	known	as	mesons	and	baryons,	and	also	
is	a	feature	of	string	theory.	Evaluate,	for	temperatures	𝑇 < 𝑇!		(i. e.  𝛽 > 𝛽!)	:	
	
(a)	The	partition	function	Z,		and			
	
(b)	The	average	energy,	U,	and	the	specific	heat,	C,	of	this	system,	written	in	terms	of	
𝑇 and 𝑇!.	


