Net Energy of Ethanol

Nicholas Eggert

Outline

- I. Introduction
- II. Ethanol Production / Energy Inputs
- III. Review of studies
- IV. Cellulosic Ethanol

Ethanol Production (Corn)

- Enzymes convert starch to dextrose
- Fermentation
- Distillation
- Dehydration
- Coproducts: livestock feed, corn syrup

Energy Inputs

- Farm machinery fuel
- Fertilizer
- Irrigation
- Transport
- Electricity in Processing Plans
- Labor
- ...

Corn ethanol is energy efficient, as indicated by an energy ratio of 1.24, that is, for every Btu dedicated to producing ethanol, there is a 24-percent energy gain.

Source: Shapouri, H., Duffield, J.A. & Graboski, M.S. Estimating the Net Energy Balance of Corn Ethanol. (1995). (sponsored by USDA)

Ethanol use in US gasoline should be banned, not expanded.

Source: Hodge, C. Ethanol use in US gasoline should be banned, not expanded. *Oil & Gas Journal* **100**, 20–30 (2002).

Source: Farrell, A.E. et al. Ethanol Can Contribute to Energy and Environmental Goals. *Science* **311**, 506-508 (2006).

	Marland & Turhollow 1991	Lorenz & Morris 1995	Graboski 2002	Shapouri et al. 2002	Pimentel & Patzek 2005	Kim & Dale 2005	
milling technology:	wet	mixed	mixed	dry	dry	dry	
	all values in MJ per liter ethanol unless otherwise noted						
		fuel and elec	stricity				
agriculture							
fuel	2.0	0.7	2.2	2.7	2.0	0.8	
electricity	0.2	2.0	0.5	0.6	0.5	0.1	
feedstock transport		0.4	0.5	0.6	1.5	0.5	
industrial process	1921210	1000	1000		10000		
tuel	10.5	10.9	11.8	10.0	11.7	12.5	
electricity	3.5	3.2	2.9	3.6	5.3	2.2	
ethanol distribution			0.4	0.4		0.6	
total fuel and electricity	16.1	17.1	18.4	17.9	21.0	16.8	
		upstream e	nergy				
agriculture		1993428					
fertilizer	4.2	3.6	2.6	2.3	4.7	2.0	
biocides	0.3	0.3	0.2	0.4	1.3	0.4	
other		0.9	0.3	0.1	3.1	0.1	
other nonagriculture					0.1		
total upstream energy	4.5	4.9	3.2	2.8	9.2	2.5	
		calculation	of r _E				
	20.6		21.6	20.7	20.1	10.2	
coproduct energy input	(2.3)	(7.7)	(4.5)	(3.7)	(2.0)	(4.8)	
not on organization ut	10.2	14.2	17.1	17.1	20.1	14.5	
allocation factor (%)	90%	65%	70%	82%	02%	75%	
re (unitional)	1 20	1.65	1 29	1 29	0.94	1 62	
re (unitiess)	1.23	1.05	1.30	1.30	0.04	1.02	
		reference	data				
upstream fuel included?	yes	no	yes	yes	yes	yes	
electricity heat rate	3.0	2.4	3.0	2.7	3.3	3.2-3.4	
corn yield (Mg/ha)	7.5	7.5	8.8	7.7	8.7	9.0	
ethanol yield (L/kg)	0.37	0.38	0.39	0.39	0.37	0.39	
oil reduction (%)			94%	84%			
projected rE (unitless)	1.67	2.51	1.40			1.91	

Cellulosic Ethanol

- Crops easier to grow
- Higher crop yields
- Uses entire plant
- Cellulose refined into ethanol
- Lignin burned to generate electricity (surplus)
- Not ready for large-scale production (Enzymes to break down cellulose inefficient)

	Tyson et al. 1993	Lynd & Wang 2004	Sheehan et al. 2004	Pimentel & Patzek 2005			
fuel:	various	poplar	corn stover	switchgrass			
	all values in MJ/L unless otherwise noted						
	fuel and electricity						
agriculture				1124			
fuel	0.8	1.1	0.8	<i>{</i> 1,1			
electricity	0.4	1.2	0.5	1,1			
industrial process	0.4	1.3	0.5	1.4			
fuel	0.2	2.9		20.1			
electricity	0.1		0.3	8.9			
ethanol distribution	1.4						
total fuel and electricity	2.9	5.4	1.5	31.5			
	upst	ream energy					
agriculture							
fertilizer	1.1	0.1	4.0	0.9			
biocides		0.0		0.3			
other	0.5	0.4	0.2	0.8			
total upstream energy	1.5	0.4	13	2.5			
total upstream energy	1.5			2.0			
	calc	ulation of r _E					
aross oppravinput				24.0			
surplus electricity	5.4	33	19	34.0			
gross energy output	29.0	26.9	25.5	23.6			
rE (unitless)	6.61	4.55	4.40	0.69			
	refe	erence data					
upstream fuel included?	yes	7	yes	yes			
nominal electric multiplier	3.3	2.7	3.0	3.3			
feedstock yield (Mg/ha-yr)	11.2-33.6		8.2	10.0			
ethanol yield (L/kg)	0.37-0.41	0.34	0.34	0.40			
on reduction (%)			95%				

Conclusion

- No clear answer
- Cellulosic Ethanol looks promising

Sources

- 1. Shapouri, H., Duffield, J.A. & Graboski, M.S. Estimating the Net Energy Balance of Corn Ethanol. (1995).
- 2. 2. Farrell, A.E. et al. Ethanol Can Contribute to Energy and Environmental Goals. *Science* **311**, 506-508 (2006).
- 3. 3. Pimentel, D. & Patzek, T.W. Ethanol Production Using Corn, Switchgrass, and Wood; Biodiesel Production Using Soybean and Sunflower. *Natural Resources Research* **14**, 65-76 (2005).
- 4. 4. Hodge, C. Ethanol use in US gasoline should be banned, not expanded. *Oil & Gas Journal* **100**, 20–30 (2002).
- 5. 5. Hammerschlag, R. Ethanol's Energy Return on Investment: A Survey of the Literature 1990-Present. *Environmental Science & Technology* **40**, 1744-1750 (2006).
- 6. 6. Schmer, M.R. et al. Net energy of cellulosic ethanol from switchgrass. *Proceedings of the National Academy of Sciences* **105**, 464-469 (2008).