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Abstract—The potential benefits of multiple-antenna systems
may be limited by two types of channel degradations—rank
deficiency and spatial fading correlation of the channel. In this
paper, we assess the effects of these degradations on the diversity
performance of multiple-input multiple-output (MIMO) systems,
with an emphasis on orthogonal space–time block codes (OSTBC),
in terms of the symbol error probability (SEP), the effective
fading figure (EFF), and the capacity at low signal-to-noise ratio
(SNR). In particular, we consider a general family of MIMO chan-
nels known as double-scattering channels—i.e., Rayleigh product
MIMO channels—which encompasses a variety of propagation
environments from independent and identically distributed (i.i.d.)
Rayleigh to degenerate keyhole or pinhole cases by embracing
both rank-deficient and spatial correlation effects. It is shown
that a MIMO system with �� transmit and �� receive antennas
achieves the diversity of order ���������� ���� ��� ��� in a
double-scattering channel with �� effective scatterers. We also
quantify the combined effect of the spatial correlation and the lack
of scattering richness on the EFF and the low-SNR capacity in
terms of the correlation figures of transmit, receive, and scatterer
correlation matrices. We further show the monotonicity properties
of these performance measures with respect to the strength of
spatial correlation, characterized by the eigenvalue majorization
relations of the correlation matrices.

Index Terms—Channel capacity, diversity, double scattering,
fading figure, keyhole, multiple-input multiple-output (MIMO)
system, orthogonal space–time block code (OSTBC), spatial fading
correlation, symbol error probability (SEP).

I. INTRODUCTION

RECENT rapid advances in multiple-input multiple-output
(MIMO) communication theory and growing cognizance

of the tremendous performance gains achieved by MIMO tech-
niques [1]–[9] have spurred efforts to integrate this technology
into future wireless systems such as wireless local area networks
(WLANs) and 4G cellular systems. One of the approaches to
exploiting diversity capability of MIMO channels is the use
of orthogonal space–time block codes (OSTBCs), which have
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drawn considerable attention because they attain full diversity
with scalar maximum-likelihood (ML) decoding [7]–[9].1

In general, the potential benefits of multiple-antenna sys-
tems may be limited by rank deficiency of the channel due to
double scattering or the keyhole effect, for example, as well
as spatial fading correlation due, for instance, to insufficient
spacing between antenna elements [17]–[30]. Some mech-
anism rendering a MIMO channel rank deficient cannot be
explained by the archetypal model based on single-scattering
processes [26], [27]. To address this issue, a double-scattering
MIMO model has been proposed recently in [24] wherein the
channel matrix is characterized by a product of two statistically
independent complex Gaussian matrices, in contrast to the
common single complex Gaussian matrix characterization
for wireless MIMO channels.2 This double-scattering model
can capture both rank-deficient and spatial correlation effects
of MIMO channels and encompass a variety of propagation
environments, bridging the gap between an independent and
identically distributed (i.i.d.) Rayleigh case and a degenerate
one-rank channel known as a keyhole or pinhole channel. There
are other recent attempts to modeling MIMO channels for more
realistic scattering environments (e.g., double or multibounce
diffuse scattering) beyond single scattering [31]–[34].

The effects of rank deficiency and spatial correlation on
the capacity of MIMO channels are relatively well understood
(see, e.g., [17]–[30]). From a capacity point of view, it has
been known that at high signal-to-noise ratio (SNR), the spatial
fading correlation reduces the diversity advantage—a parallel
shift of the capacity curve over SNR in decibels (dB)—offered
by multiple antennas, whereas the rank deficiency decreases
the spatial multiplexing benefit—a slope of the capacity curve
over SNR—of multiple-antenna channels [21]. Previously, the
performance of space–time coding in the presence of spatial
fading correlation has been extensively studied for the most
popular Rayleigh, Rician, and Nakagami- fading [35]–[40].
Also, the effect of rank deficiency has been investigated in
[41]–[44] for a special case of the keyhole channel.

The objective of this paper is to assess the effects of double
scattering on the diversity performance of MIMO systmes in
a communication link with transmit antennas, receive
antennas, and effective scatterers on each of the transmit
and receive sides, which is referred to as a “double-scattering

-MIMO channel.” Due to the channel decoupling
property, the OSTBC converts a MIMO fading channel into
identical single-input single-output (SISO) subchannels, each

1However, OSTBCs with arbitrary complex constellation cannot provide
the full diversity and full transmission rate simultaneously for more than
two transmit antennas [8, Theorem 5.4.2] (see also [10]–[13]). A new class
of quasi-orthogonal codes has been proposed in [14]–[16] with the tradeoff
between the decoding complexity, transmission rate, and/or diversity.

2In [24], the model was validated by simulations using ray tracing techniques.
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for a different transmitted symbol, with a path gain given by
the Frobenius norm3 of the channel matrix [38]–[42]. As
a result, the maximum achievable diversity performance of
MIMO systems can be characterized by the statistical property
of . Therefore, using the OSTBC as a pivotal MIMO
diversity technique4 (particularly, in the absence of channel
knowledge at the transmitter), we analyze the relevant per-
formance measures in double-scattering -MIMO
channels, namely: i) the symbol error probability (SEP) [49], ii)
the effective fading figure (EFF) [50]–[52], and iii) the capacity
in a low-SNR regime [53], [54].

Diversity in communication can ameliorate system perfor-
mances on behalf of error probability, information rate, and
signal fluctuation due to fading. From an error probability
viewpoint, the diversity attacks a high-SNR slope of the SEP
curve, i.e., diversity order. In contrast, the diversity (from a
capacity point of view) affects a low-SNR slope of the capacity
curve rather than a high-SNR slope. For example, the high- and
low-SNR slopes (bits/s/Hz per 3 dB) of the capacity for i.i.d.
Rayleigh-fading MIMO channels are given by

respectively [53]. While the high-SNR capacity slope is
limited by the spatial multiplexing gain , the
low-SNR capacity slope is limited by the diversity gain
amounting to the harmonic mean of and . Therefore,
the capacity is multiplexing-limited in the high-SNR regime,
but is diversity-limited in the low-SNR regime. At high SNR,
the diversity advantage serves only to provide the power
offset (i.e., the parallel shift of the capacity curve) [21]. These
lessons stimulate a shift of focus to the low-SNR regime in
analyzing the diversity effect on the capacity behavior. More
inherently, diversity systems aim to reduce signal fluctuations
due to the nature of fading. The EFF measure is defined as a
variance-to-mean-square ratio (VMSR) of the instantaneous
SNR (see Definition 1). This quantity can be used to assess the
severity of fading and the effectiveness of diversity systems on
reducing signal fluctuations. The main results of this paper can
be summarized as follows.

• We show that the achievable diversity is of order

Hence, if the channel is “rich-enough,” that is, the number
of effective scatterers is greater than or equal to the num-
bers of transmit and receive antennas, the full spatial diver-

3The Frobenius norm of an�� � matrix��� � �� � is defined as

����� ����������� � �� �

where �� ��� and � denote the trace operator and the transpose conjugate of a
matrix, respectively.

4If the transmitter has channel knowledge, the maximum MIMO diversity can
be achieved by transmit beamforming (often called maximum ratio transmission
(MRT) or MIMO maximal-ratio combining) in the eigenspace of the largest
eigenvalue of the Gramian matrix����

��� [45]–[48].

sity order of can be achieved even in the presence of
double scattering.

• We derive exact analytical expressions for the SEP in three
cases of particular interest:
1) spatially uncorrelated double scattering (includes i.i.d.

and keyhole channels as special cases);
2) doubly correlated double scattering (includes a spa-

tially correlated MIMO channel where spatial correla-
tion is present at both the transmitter and the receiver);

3) multiple-input single-output (MISO) double scat-
tering (corresponds to a pure transmit diversity system
wherein a burden of diversity reception at the receive
terminal is moved to the transmitter—original motiva-
tion of space–time coding [6]–[8].

• We derive the EFF and the low-SNR capacity of double-
scattering -MIMO channels. The results show
that these performance measures are completely charac-
terized by the correlation figures of transmit, receive, and
scatterer correlation matrices.5

• The EFF as a functional of the eigenvalues of correlation
matrices is monotonically increasing in a sense of Schur
(MIS).6 We show that the maximum possible increase in
the EFF due to double scattering is a sum of correlation fig-
ures of the transmit and receive correlation matrices, which
eventuates when the scatterers tend to be fully correlated
or the keyhole propagation takes place, that is, when only
a single degree of freedom is available in the channel for
communications.

• The low-SNR capacity slope as a functional of the eigen-
values of correlation matrices is monotonically decreasing
in a sense of Schur (MDS). We also obtain the low-SNR ca-
pacity of a double-scattering MIMO channel without the
constraint of orthogonal input signaling. This enables us
to assess the penalty of the use of OSTBCs (for achieving
full diversity with simple decoding) on spectral efficiency
in the low-SNR regime.

We note in passing that all the mathematical and statistical re-
sults (on the monotonicity in a sense of Schur and random ma-
trices) obtained in the appendices are applicable to many other
problems related to multiple-antenna communications—for ex-
ample, capacity analysis of MIMO relay channels [5] and spa-
tially correlated MIMO channels [21]–[23], and error proba-
bility analysis of multiple-antenna systems with cochannel in-
terference [55], [56].

This paper is organized as follows. In Section II, the system
model considered in the paper is presented. Section III analyzes
the achievable diversity and the SEP in the presence of double
scattering. Section IV analyzes the EFF and the low-SNR ca-
pacity (with and without the use of OSTBCs) of double-scat-
tering -MIMO channels. Section V concludes the
paper. In relation to our study, the notions of majorization and
Schur monotonicity are briefly discussed in Appendix I. In Ap-
pendix II, we provide supplementary useful results on some sta-
tistics derived from complex Gaussian matrices.

5The correlation figure is defined as a ratio of the second-order statistic of
the spectra of correlation matrices to that of the fully correlated matrix (see
Definition 2).

6See Appendix I for the notions of Schur monotonicity and majorization.
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Fig. 1. Block diagram of a space–time block coded system in double-scattering �� � � � � �-MIMO channels and induced SISO subchannels.

Notation: Throughout the paper, we shall use the following
notation. , , and denote the natural numbers and the fields
of real and complex numbers, respectively. The superscripts

, , and stand for the complex conjugate, transpose, and
transpose conjugate, respectively. and represent the

identity matrix and the all-zero matrix, respec-
tively. denotes the matrix with the th entry and

is the determinant of the matrix .
, , and denote the trace, exponen-

tial of the trace, and Frobenius norm of the matrix , respec-
tively. and denote the Kronecker (direct) product and di-
rect sum of matrices and denotes the vector formed by
stacking all the columns of into a column vector. Also, we de-
note by and by

. With a slight abuse of notation, a positive-semidefi-
nite matrix is denoted by and a positive-definite ma-
trix is denoted by . Finally, for a Hermitian matrix

with the eigenvalues in any order,
denotes the number of distinct eigenvalues of . Also,

and , , denote the distinct eigen-
values of in decreasing order and its multiplicity, respectively,
that is, and .

II. SYSTEM MODEL

We consider a MIMO wireless communication system with
transmit and receive antennas, where the channel re-

mains constant for an integer multiple of symbol
periods and changes independently to a new value for each co-
herence time. We assume that the channel is perfectly known at
the receiver but unknown at the transmitter.

A. Orthogonal Space–Time Block Codes

A space–time block-coded MIMO system in double-scat-
tering channels is illustrated in Fig. 1. During an -symbol
interval, symbols , , are encoded by an
OSTBC defined by an transmission matrix , where

is two-dimensional signaling constellation [8], [9]. A general
construction of complex OSTBCs with the minimal delay and
maximal achievable rate was presented in [10, Proposition 2].
This construction of the OSTBC for transmit antennas gives
the maximal achievable rate [10, Theorem 1]

(1)

where denotes the smallest integer greater than or equal

to . For example, Alamouti’s code is a one-rate

OSTBC employing two transmit antennas [7] and

(2)

is a -rate OSTBC for four transmit antennas [10].

B. Signal and Channel Models

For a frequency-flat block-fading channel, the re-
ceived signal can be expressed in matrix notation as

(3)

where is the random channel matrix whose
th entries , , , are

complex propagation coefficients between the th transmit
antenna and the th receive antenna with , and

is the complex additive
white Gaussian noise (AWGN) matrix (see [21, Definition II.1]
and [21, eq. (1)] for the definition and distribution of complex
Gaussian matrices).7 The total power transmitted through
antennas is assumed to be and hence, the average SNR per
receive antenna is equal to .

7There exist minor typos in [21, Definition II.1]; the covariance matrix�������
should be read as ��� ����.
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For double-scattering -MIMO channels (see
Fig. 1), the channel matrix can be written as [21], [24]

(4)

where is the number of effective scatterers on each
of the transmit and receive sides, and are statis-
tically independent, ,

, and Hermitian posi-
tive-definite matrices , , and are transmit,

scatterer, and receive correlation matrices
with all-diagonal entries , respectively.8 This model can
include the rank-deficient effect of MIMO channels as well as
spatial fading correlation by controlling and the correlation
matrices , , and . Therefore, (4) is a general family
of MIMO channels spanning from the i.i.d. Rayleigh case
( with , , ) to the
degenerate keyhole or pinhole case ( with ,

) [24]. Note that the separability of correlation in (4)
is a generalization of the well-known “Kronecker model” [17],
[18]. Although there have been some attempts to report discrep-
ancy between this separable correlation model and physical
measurements (see, e.g., [57], [58]), the Kronecker correlation
model has been accepted widely due to its analytical tractability
and experimental validation by the European Project [19].

In [20], the so-called stochastic rank deficiency—meaning
that the channel is rank deficient due to fading correlation, i.e.,
the correlation matrices have zero eigenvalues—was deemed
as an important feature when dealing with fading correlation.
However, this form of channel degeneracy cannot cover the case
where the channel exhibits rank deficiency even when fading
is uncorrelated. In contrast, we shall restrict , , and
to positive-definite (i.e., full rank) matrices in the paper. This
implies that the rank of is equal to with
probability one. Therefore, rank deficiency can be distinguished
from the fading correlation effect and may occur only due to
the lack of scattering richness with less than .
This also enables us to discriminate a one-rank fully correlated
scenario from a degenerate keyhole MIMO channel [29], and
grants the channel to exhibit rank deficiency with uncorrelated
fading (e.g., with , ,

).
Let and , then we have

(5)

where and
are statistically independent com-

plex Gaussian matrices.

III. SYMBOL ERROR PROBABILITY

With perfect channel knowledge at the receiver, orthogonal
space-time block encoding and decoding convert a MIMO
fading channel into equivalent SISO subchannels, each

8In general, a correlation matrix is positive semidefinite with all-diagonal en-
tries �.

for a different symbol, with a path gain [38]–[42] (as
shown in Fig. 1). Consequently, the performance of OSTBCs
is completely characterized by the statistical behavior of
and the instantaneous SNR for each of the SISO subchannels,
denoted by , is given by [41], [42]

(6)

To evaluate the SEP, we need the probability density function
(pdf) or the moment generating function (MGF) of . For
double-scattering -MIMO channels, the MGF of

can be written as

(7)

(8)

where (7) and (8) follow from Lemma 1 in Appendix II.

A. Achievable Diversity

Before devoting to deriving the SEP expressions, we dis-
cuss the diversity order achieved by the OSTBC. In general, the
achievable diversity order can be defined as

(9)

where denotes the SEP for two-dimensional signaling con-
stellation with polygonal decision boundaries. In the absence of
double scattering, the OSTBC provides the maximum achiev-
able diversity order of . The corresponding diversity order
in double-scattering -MIMO channels is given by
the following result.

Theorem 1: The diversity order achieved by the OSTBC over
double-scattering -MIMO channels is

(10)

Proof: See Appendix III-A.

Theorem 1 states that if the number of effective scatterers
is greater than or equal to the numbers of transmit and receive
antennas, the OSTBC provides the full diversity order of
even in the presence of double scattering.

We now present analytical expressions for the SEP of the
OSTBC for three cases of particular interest—spatially uncor-
related double scattering, doubly correlated double scattering,
and MISO double scattering. In what follows, a spatial corre-
lation environment of double-scattering channels is denoted by

for given , , and .
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B. Spatially Uncorrelated Double Scattering

Consider a spatial correlation environment
. This spatially uncorrelated double-scat-

tering scenario includes i.i.d. and keyhole MIMO channels as
special cases.

Let , , and the
random matrix be

if

if
(11)

which is a matrix quadratic form in complex Gaussian matrices
[21, Definition II.3]. Then, from (8) and (147) in Appendix III,
the SEP of the OSTBC with -PSK signaling in double-scat-
tering -MIMO channels can be readily written as

(12)

where we have used the fact that and have the same
nonzero eigenvalues.9

In the absence of spatial correlation, the random matrix
has the Wishart distribution [21, Definition II.2].
Applying Corollary 4 in Appendix II to (12), we obtain the SEP
for this spatially uncorrelated environment as

(13)

where

(14)

and is the Hankel matrix
whose th entry is given by

(15)

Example 1 (Uncorrelated Extremes—Keyhole and i.i.d.): The
i.i.d. and keyhole MIMO channels are two extreme cases of spa-
tially uncorrelated double scattering (i.e., and ,
respectively). If , then and . Hence,
(13) reduces to [41, eq. (11)] for keyhole MIMO channels. As

, (13) becomes [42, eq. (26)] (with a Nakagami param-
eter ) for i.i.d. Rayleigh-fading MIMO channels.

Fig. 2 shows the SEP of 8-PSK (2.25 bits/s/Hz)
versus the SNR in spatially uncorrelated double-scattering

-MIMO channels when varies from (keyhole) to
infinity (i.i.d. Rayleigh). We can see that as increases, the

9As mentioned in the proof of Theorem 1, The SEP for the general case of ar-
bitrary two-dimensional signaling constellation with polygonal decision bound-
aries can be written as a convex combination of terms akin to (147). Thus, our
results can be easily extended to any two-dimensional signaling constellation.

Fig. 2. SEP of 8-PSK ��� (2.25 bits/s/Hz) versus �� in spatially uncorre-
lated double-scattering ��� � � ��-MIMO channels. � � �� �� �� 	� �
�
�
�	
��

�� (i.i.d. Rayleigh).

SEP approaches that of i.i.d. Rayleigh-fading MIMO channels
in the absence of double scattering. This resembles the behavior
in Rayleigh-fading channels with diversity reception, that is, the
channel behaves like an AWGN channel (diversity order of )
as the number of receive antennas increases. Observe that when

, the slope of the SEP curve at high SNR is identical
to that of the i.i.d. case. This example confirms the result of
Theorem 1: the diversity orders are equal to and

for and , respectively, whereas for
and (i.i.d.). A clearer understanding

about the diversity behavior is obtained by referring to Fig. 3,
where the SEPs of 16-PSK Alamouti (4 bits/s/Hz) and
(3 bits/s/Hz) OSTBCs versus the SNR in spatially uncor-
related double-scattering -MIMO channels are
shown. Using (10), we can easily show that the Alamouti
and codes achieve the diversity order of for

and channels; for and
channels; and for and

channels. As can be seen, we obtain a close agreement in the
slopes of the SEP curves, corresponding to the same value of

, at high SNR.

C. Doubly Correlated Double Scattering

Consider a spatial correlation environment
, where spatial correlation exists only on the

transmit and receive ends. Note that this scenario includes a
spatially correlated MIMO channel in the absence of double
scattering as a special case. Let and ,

, , be the eigenvalues of
and in any order, respectively. Suppose that . Then,

. Applying Theorem 10 in Appendix II to
(12), we obtain the SEP in the environment as

(16)
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Fig. 3. SEP of 16-PSK Alamouti (4 bits/s/Hz) and ��� (3 bits/s/Hz) OSTBCs
versus �� in spatially uncorrelated double-scattering �� � � � � �-MIMO chan-
nels. The Alamouti and ��� codes achieve the diversity order of � � � in
����� �� and ��� �� �� links, respectively. The � ’s for ���	� ��� ����� ��
and ����
� ���� ��� 	� 	� pairs are � and �
, respectively.

with

(17)

where and ,

, are matrices whose th
entries are given, respectively, by

(18)

and by (19) (shown at the bottom of the page). In (19),
is the th characteristic coefficient of (see Definition 4
in Appendix II).

Fig. 4 shows the SEP of 8-PSK versus the SNR in
doubly correlated double-scattering -MIMO channels.
In this figure, the transmit and receive correlations follow the
constant correlation , defined by (53) in
Appendix I, and the correlation coefficient ranges from (spa-
tially uncorrelated double scattering) to . The characteristic
coefficients of the constant correlation matrix are given by (131)
and (132) (see Example 6 in Appendix II). For comparison, we
also plot the SEP of i.i.d. Rayleigh-fading MIMO channels. In
Fig. 4, we can see that the SNR penalty due to double scattering
with (in the absence of spatial correlation) is about
1 dB at the SEP of and it becomes larger than 2.5 dB for

. In Fig. 5, the SEP of 8-PSK at 15 dB is depicted
as a function of a correlation coefficient for doubly correlated

Fig. 4. SEP of 8-PSK ��� (2.25 bits/s/Hz) versus �� in doubly correlated
double-scattering ��� �
���-MIMO channels. The transmit and receive cor-
relations follow the constant correlation ��� � ��� � ��� ��� for � � 

(spatially uncorrelated double-scattering),
��� 
���
���
���
�	�
��� 
�
� 
���
and 
��. For comparison, the SEP for i.i.d. Rayleigh-fading MIMO channels is
also plotted.

double-scattering -MIMO channels with constant cor-
relation when
and (doubly correlated Rayleigh). This figure demonstrates
that double scattering and spatial correlation degrade the SEP
performance considerably.

D. MISO Double Scattering

Finally, we consider a double-scattering MISO channel. This
is a pure transmit diversity system wherein the burden of diver-
sity reception at the receive terminal is moved to the transmitter.
The SEP in double-scattering MISO channels can be obtained
from (8) with as

(20)
Let , , be the eigenvalues of in any order.
Then, applying Theorem 11 in Appendix II to (20), we obtain

(21)

(19)
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Fig. 5. SEP of 8-PSK ��� (2.25 bits/s/Hz) as a function of correlation coeffi-
cient � in doubly correlated double-scattering (4, � , 4)-MIMO channels with
constant correlation ��� � ��� � ��� ���. � � �, 10, 20, 50, 100, �
(doubly correlated Rayleigh) and �� � �� �	.

Fig. 6. SEP of 8-PSK ��� (2.25 bits/s/Hz) versus � in double-scat-
tering �
� � � ��-MIMO channels. The transmit and scatterer correlations
follow the constant correlation ��� � ��� ��� and ��� � ��� ��� for
� � �� ���� ���� ��
� ��
��������� ���� ���� and ���. �� � 25 dB.

where and are the characteristic coeffi-
cients of and , respectively.

The effects of the spatial correlation and the number of ef-
fective scatterers on the SEP performance in MISO channels
can be ascertained by referring to Fig. 6, where the SEP of

-PSK at 25 dB versus is depicted for double-scat-
tering -MIMO channels. The transmit and scatterer
correlations follow the constant correlation and

where varies from to . Note that the max-
imum achievable diversity order is equal to for

. Hence, the SEP performance improves rapidly as
increases, and approaches the corresponding SEP in the absence
of double scattering.

IV. EFFECTIVE FADING FIGURE AND LOW-SNR CAPACITY

In this section, we access the combined effect of rank defi-
ciency and spatial correlation on the performance of OSTBCs
in terms of the EFF and the capacity in a low-SNR regime.
It will be apparent that these performance measures are com-
pletely characterized by the kurtosis of .

A. Effective Fading Figure

One of the goals of diversity systems is to reduce the signal
fluctuation due to the stochastic nature of multipath fading.
Therefore, it is of interest to characterize the variation of the
instantaneous SNR at the output where the amount of signal
fluctuations is measured. The following measure can be used to
assess the severity of fading and the effectiveness of diversity
systems on reducing signal fluctuations.

Definition 1 (Effective Fading Figure): For the instantaneous
SNR at the output of interest in a communication system sub-
ject to fading, the EFF in decibels for the output SNR is de-
fined as the VMSR of , i.e.,

(22)

It should be noted that the EFF is akin to the notions of the
normalized standard deviation (NSD) of the instantaneous com-
biner output SNR [50]–[52] and the amount of fading (AF) [59],
[60]. The AF, as defined in [59, eq. (2)], is purely to charac-
terize the amount of random fluctuations in the channel itself
and conveys no information about diversity systems. In con-
trast, the NSD is a measure of the signal fluctuations at the
diversity combiner output, enabling us to compare the effec-
tiveness of diversity combining techniques such as maximal-
ratio combining (MRC), equal-gain combining (EGC), selec-
tion combining (SC), and hybrid section/maximal-ratio com-
bining (H-S/MRC). If the signal fluctuation is measured at each
branch output, the EFF is synonymous with the AF. In contrast,
when the signal fluctuation is measured at the diversity com-
biner output, the EFF is equal to the square of the NSD of the
instantaneous SNR at the combiner output. The term “AF” was
also confusingly used for diversity systems in some literature
with a view to bridging the philosophy between characterizing
physical channel fading and quantifying the degree of diversity
effectiveness [42], [61], [62].

By definition, the efficiency of OSTBCs on reducing the
severity of fading can be assessed by

(dB)

(23)

where is the kurtosis of defined by

(24)
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In (24), the second equality follows from the fact that the kur-
tosis is invariant with respect to translations of a random vari-
able. Note that the minimum EFF is equal to decibels if
there is no random fluctuation in the received signal. Also, the
EFF is equal to 0 dB for Rayleigh fading without diversity and
hence, 0 dB means that the variation of the instan-
taneous SNR in each SISO subchannel is more severe than that
in Rayleigh fading.

1) Note on the Kurtosis of : The kurtosis measures the
peakedness or flatness of a distribution [63]. It has been revealed
that this normalized form of the fourth statistic of fading distri-
butions plays a key role in the low-SNR behavior of the spec-
tral efficiency in fading channels [53], [64]. To proceed with
deriving for double-scattering -MIMO
channels, we first define the following scalar quantity related to
a correlation matrix.

Definition 2 (Correlation Figure): For an arbitrary
correlation matrix , the correlation figure of is defined by

(25)

where denotes the all-one matrix.

Note that , where the lower and upper bounds
correspond to uncorrelated and fully correlated cases, respec-
tively.10 The following Schur monotonicity properties hold for
the correlation figure (the proofs are given in Appendix III-B).

Property 1: Let be an correlation matrix. Then, the
correlation figure as a functional of the eigenvalues of
is MIS, that is, if , then

(26)

Property 2: Let , , be correlation
matrices. Then, the product of correlation figures, ,
as a functional of the eigenvalues of , is MIS, that is, if

(27)

then

(28)

Property 3: Let , , be correlation
matrices. Then, the sum of correlation figures , as
a functional of the eigenvalues of , is MIS, that is, if

(29)

10Similar to (25), the correlation number was defined as �� ��� [54].
While the correlation figure and number are the second-order statistics of
the spectra of a correlation matrix, normalized by those of fully correlated
and uncorrelated matrices, respectively, the correlation figure is bounded by
� � � ����� � � for any correlation structure, as � � �.

then

(30)

The next theorem shows that depends exclusively
on the spectra of spatial correlation matrices and is quantified
solely by their correlation figures.

Theorem 2: For double-scattering -MIMO
channels, the kurtosis of is

(31)
Proof: See Appendix III-C.

Example 2 (Spatially Uncorrelated Double Scattering): In
the absence of spatial fading correlation , we have

(32)

As compared with the i.i.d. case, the keyhole increases the
kurtosis of the fading distribution in SISO subchannels by twice
the reciprocal of the harmonic mean between the numbers of
transmit and receive antennas, that is, .

Next, we show the Schur monotonicity property of .

Corollary 1: Let

(33)

for a spatial correlation environment .
Then, the kurtosis of , as a functional of the eigen-
values of , is a MIS (or isotone) function, that is, if

, then

(34)

Proof: It follows immediately from Theorem 2 and Prop-
erties 2 and 3 stating the fact that the product and sum of corre-
lation figures preserve the monotonicity property.

Corollary 1 implies that the less spatially correlated fading
results in the less peaky fading distribution of each SISO sub-
channel.

2) Note on the EFF of : From Theorem 2 and (23), it
is straightforward to see that the in double-scattering

-MIMO channels is given by

(35)

from which we can make the following observations on the
.

• The as a functional of the eigenvalues of
is MIS, that is,

(36)

whenever . This reveals that the less
spatially correlated fading results in the less severe random
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fluctuations in equivalent SISO subchannels induced by
OSTBCs.

• In the absence of double scattering, is equal to zero
and thus, the double scattering together with spatial cor-
relation causes the to increase by the amount
of . In particular, the max-
imum increase in the is a sum of correlation fig-
ures of the transmit and receive correlation matrices, that
is, , which eventuates when goes to be
fully correlated or when the keyhole effect takes place.

B. Low-SNR Capacity

Recent information-theoretic studies show that the first-order
analysis of the capacity versus the SNR fails to reveal the im-
pact of the channel and that second-order analysis is required to
assess the wideband or low-SNR performance of communica-
tion systems [53], [54]. In particular, it was demonstrated that
the tradeoff between the capacity in bits per second per hertz
(bits/s/Hz) and energy per bit required for reliable communi-
cation is the key measure of channel capacity in a low-SNR
regime. In this regime, the capacity can be characterized by two
parameters, namely, i) , the minimum bit energy per noise
level required to reliably communicate at any positive data rate
(where denotes the total transmitted energy per bit), and ii)

, the low-SNR slope (bits/s/Hz per 3 dB) of the capacity at the
point .

1) General Input Signaling: Before proceeding to study the
low-SNR capacity achieved by OSTBCs, we first deal with the
more general case of input signaling, assuming that the fading
process is ergodic and coding is across many independent fading
blocks without a delay constraint.

Theorem 3: Consider a general -MIMO double
scattering channel

(37)

where the channel matrix is given by (4) at each coherence in-
terval and the input signal is subject to the power
constraint . Suppose that the receiver knows
the realization of , but the transmitter has no channel knowl-
edge. Then, the minimum required for reliable communica-
tion is

(38)

and the low-SNR slope (bits/s/Hz per 3 dB) of the capacity is

(39)

Proof: See Appendix III-D.

From Theorem 3, we can make the following observations.
• The is inversely proportional to , whereas the

double scattering and spatial fading correlation as well as
the numbers of transmit antennas and effective scatterers
do not affect this measure. Moreover, regardless of the

number of antennas and propagation conditions, the min-
imum received bit energy per noise level required for reli-
able communication, , is equal to

1.59 dB (40)

which is a fundamental feature of the channels where the
additive noise is Gaussian [53, Theorem 1].

• The low-SNR slope as a functional of the eigenvalues
of is MDS, that is, if , then

(41)

where is defined for the environment
as follows:

(42)

Note that (41) follows from (39) and Properties 2 and 3.
This MDS property reveals that the low-SNR slope de-
creases with the amount of spatial correlation in contrast
to the high-SNR capacity slope , which
is invariant with respect to spatial correlation [21].

Example 3 (Dual-Antenna System): Consider .
In the presence of spatially uncorrelated double scattering, the
low-SNR slope for general double-scattering -MIMO
channels is

bits/s/Hz per 3 dB (43)

which is bounded by . The lowest and highest
slopes are achieved when (keyhole) and (i.i.d.),
respectively.

2) OSTBC Input Signaling: We now turn our attention to
the low-SNR behavior of the capacity for double-scattering

-MIMO channels employing OSTBCs.

Theorem 4: Consider an -MIMO double scat-
tering channel

where the channel matrix is given by (4) at each coherence
interval and the OSTBC is subject to the power constraint

. Then, the OSTBC achieves the minimum re-
quired the same as that without the orthogonal signaling
constraint

(44)

and the low-SNR slope (bits/s/Hz per 3 dB) of the capacity

(45)

Proof: See Appendix III-E.

From Theorem 4, we can make the following observations in
parallel to Section IV-B1.
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Fig. 7. Capacity in bits/s/Hz versus the received for the general input sig-
naling and OSTBC��� in double-scattering ��� ��� ��-MIMO channels with ex-
ponential correlation ��� � ��� � ��� ����� and ��� � ��� �����.

• As compared with the general case, the use of OSTBCs
does not increase the minimum required for reliable
communication in MIMO channels.

• The low-SNR slope as a functional of the eigen-
values of is MDS, that is, if , then

(46)

In contrast, we see from (159) that the high-SNR slope of
the capacity is equal to , which does not depend on spatial
correlation and double scattering.

Example 4 (Alamouti’s Code): Consider .
In the presence of spatially uncorrelated double scattering, the
low-SNR slope for Alamouti’s code with two receive antennas
is

bits/s/Hz per 3 dB (47)

which is bounded by .

In Fig. 7, the capacity (bits/s/Hz) versus and its
low-SNR approximation are depicted with and without
the signaling constraint of the OSTBC in double-scat-
tering -MIMO channels with exponential correlation

and . For the OSTBC
, the low-SNR approximation is remarkably accurate for a

fairly wide range of , whereas there exists some discrep-
ancy between the Monte Carlo simulation and the first-order
approximation for the general input signaling—approximately
11% difference at 0 dB, for example. In this scenario,
the low-SNR slopes are 1.26 and 2.46 bits/s/Hz per 3 dB with
and without the OSTBC input signaling constraint, respectively.
Thus, the use of the OSTBC incurs about 49% reduction
in the slope. This slope reduction is much smaller than that in
a high-SNR regime: the high-SNR slope for the OSTBC is

and the corresponding slope for the general signaling
is equal to 4 bits/s/Hz per 3 dB [21].

V. CONCLUSION

We investigated the combined effect of rank deficiency
and spatial fading correlation on the diversity performance of
MIMO systems. In particular, we considered double-scattering
MIMO channels employing OSTBCs which use up all antennas
to realize full diversity advantage. We characterized the effects
of double scattering on the severity of fading and the low-SNR
capacity by quantifying the EFF and the capacity slope in terms
of the correlation figures of spatial correlation matrices. The
Schur monotonicity properties were shown for these perfor-
mance measures as functionals of the eigenvalues of correlation
matrices. We also determined the required scattering richness
of the channel to achieve the full diversity order of .
Finally, we derived the exact SEP expressions for some classes
of double scattering, which consolidate the effects of rank
efficiency and spatial correlation on the SEP performance. On
account of the generality of channel modeling, the results of the
paper are substantial enough to encompass those for well-ac-
cepted existing models (e.g., i.i.d./spatially correlated/keyhole
MIMO channels) as special cases of our solutions.

APPENDIX I
MAJORIZATION, SCHUR MONOTONICITY,

AND CORRELATION MATRICES

We use the concept of majorization (see, e.g., [65]–[70]) as
a mathematical tool to characterize different spatial correlation
environments. Using the majorization theory, the analytical
framework was established in [52] to assess the performance
of multiple-antenna diversity systems with different power
dispersion profiles. In particular, monotonicity theorems were
proved for various performance measures such as the NSD of
the output SNR, the ergodic capacity, the matched-filter bound,
the inverse SEP, and the symbol error outage. The notion of
majorization has also been used in [18], [36], [71] as a measure
of correlation. In this appendix, we briefly discuss the basic
properties of majorization and Schur monotonicity.

A. Majorization and Correlation Matrices

Given a real vector , we rearrange
its components in decreasing order as .

Definition 3: For ,
, we denote and say that is weakly majorized (or

submajorized) by if

(48)

If holds in addition to , then we say
that is majorized by and denote as .

For example, if each and , then

(49)

The Hardy–Littlewood–Pólya theorem [69, Theorem 2.B.2] ar-
gues that if and only if there exist a doubly stochastic
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matrix such that .11 Of particular interest are the
majorization relations among Hermitian matrices in terms of
their eigenvalue vectors to compare different spatial correla-
tion environments. A Hermitian matrix is said to be ma-
jorized by a Hermitian matrix , simply denoted by ,
if where denotes the vector of eigenvalues
of a Hermitian matrix. For example, the well-known Schur’s
theorem [70, eq. (5.5.8)] on the relationship between the eigen-
values and diagonal entries of Hermitian matrices can be written
as

for Hermitian (50)

where denotes a Hadamard (i.e., entrywise) product. One of
the most useful results on the eigenvalue majorization is the fol-
lowing theorem.

Theorem 5 [67, Theorem 7.1]: A linear map
is called positive if for

and unital if . It is said to be doubly stochastic
if is a unital positive linear map with the trace-preserving
property, i.e., , . Let
be Hermitian and be a doubly stochastic map. Then

(51)

Recall that the Schur product theorem [70, Theorem 5.2.1]
says that the Hadamard product of two positive semidefinite ma-
trices is positive semidefinite. Therefore, if is an ar-
bitrary correlation matrix and define , then is
obviously a doubly stochastic map on .

Corollary 2: Let be Hermitian and
be a correlation matrix. Then

(52)

11A square matrix is said to be doubly stochastic if all entries of the matrix
are nonnegative and the sum of the entries in each row and column is equal to
one.

In fact, this result was first given in [68, Corollary 2] without
using the notion of doubly stochastic maps. From Corollary 2,
we can obtain the eigenvalue majorization relations for the
well-known correlation models—constant, exponential, and
tridiagonal correlation—which have been widely used for
many communication problems of multiple-antenna systems
(see, e.g., [21]–[23], [49], [54], [72]).

Example 5 (Constant, Exponential, Tridiagonal Matrices):
The th-order constant, exponential, and tridiagonal matrices
with a coefficient , denoted by , , and ,
respectively, are symmetric Toeplitz matrices of the
structures shown in (53)–(55) at the bottom of the page.
Note that , with , and with

are correlation matrices, since they are
positive semidefinite for such values of . Let .
Then, since

it follows from Corollary 2 that

(56)

(57)

(58)

Remark: If , then and
are positive semidefinite. Hence, the majorization relations
(56)–(58) hold, although each matrix itself is only Hermitian
but may not be positive semidefinite.

B. Schur Monotonicity

The concept of majorization is closely related to a MIS (or
MDS) function. If a function (a subset of) satis-
fies whenever , then is

...
...

...
. . .

...
(53)

...
...

...
. . .

...
(54)

. . .
. . .

. . .
(55)
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called a MIS (or isotone) function on (a subset of) . The fol-
lowing theorem gives a necessary and sufficient condition for
to be MIS.

Theorem 6 (Schur 1923): Let and be
continuously differentiable. Then, the function is MIS on
if and only if

is symmetric on (59)

and for all

(60)

Note that Schur’s condition (60) can be replaced by

(61)

because of the symmetry. If is MIS on , then is a MDS
function on .

APPENDIX II
SOME STATISTICS DERIVED FROM COMPLEX

GAUSSIAN MATRICES

This appendix gives useful results on some statistics derived
from complex Gaussian matrices.

A. Preliminary Results

Lemma 1: Let , ,
be statistically independent complex Gaussian matrices and

(62)
Then, for and , ,
we have

(63)

Proof: Since , we have

(64)
Therefore12

(65)

12If ��� � �� � is an � � � matrix of functionally independent complex
variables, then

���� � � � � ��� �

where and

Combining (64) and (65) completes the proof.

Lemma 2: Let . Then, for
matrices and , we have

(66)

Proof: Let and be matrices such that

(67)

Then, since

(68)

we get

(69)

By comparing both the sides of (67), we have

(70)

(71)

Finally, substituting (70) and (71) into (69) completes the proof.

Lemma 3: Let . Then, the character-
istic function of is

(72)

where and is an arbitrary matrix.
Proof: Let . Then

(73)
Since

(74)

it follows from Lemma 2 that

(75)

Combining (73) and (75) completes the proof.

We remark that Lemma 3 is a counterpart result of the real
case in [73, Theorem 2.3.2].
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B. Hypergeometric Functions of Matrix Arguments

The hypergeometric functions of matrix arguments often ap-
pear in deriving the distributions and statistics of random ma-
trices [73]–[77]. In parallel to the hypergeometric functions of
a scalar argument, the hypergeometric functions of one or two
matrix arguments can be expressed as an infinite series of zonal
polynomials13

(76)

(77)

with Hermitian and . In (76) and (77),
denotes a partition of the nonnegative in-

teger such that and ,
is the complex multivariate hypergeometric coefficient of

the partition [75, eq. (84)], and is the zonal polynomial
of a Hermitian matrix [75, eq. (85)]. Although these functions
are of great interest from an analytical point of view, the prac-
tical difficulty lies in their numerical aspects. The determinantal
representation for the hypergeometric function of two Hermitian
matrices [77, Lemma 3] settles this computational problem and
has been widely used in the literature of multiple-antenna com-
munication theory (see, e.g., [22], [23], [55], [56]). However,
[77, Lemma 3] is valid only for the case of two matrix argu-
ments with the same dimension and the distinct eigenvalues. In
the following lemma, we generalize [77, Lemma 3] for the case
that two matrix arguments have different matrix dimension and
eigenvalues of arbitrary multiplicity.

Lemma 4: Let and , , be
Hermitian matrices with the ordered eigenvalues

and , respectively. Given
where and , define

(78)

(79)

where is an arbitrary nonnegative integer,
, is the Pochhammer symbol, and

13Zonal polynomials of a symmetric matrix were introduced in [74] using
group representation theory. In parallel to a real matrix argument, zonal poly-
nomials of a Hermitian matrix were defined in [75] as natural extension of
the real case. Those polynomials are homogeneous symmetric functions in the
eigenvalues of matrix argument and can be constructed in terms of homoge-
neous symmetric polynomials such as monomial symmetric functions, elemen-
tary symmetric functions, and Schur functions [78].

is the generalized hyper-
geometric function of scalar argument [79, eq. (9.14.1)]. Then,
we have a generic determinantal expression for the hypergeo-
metric function of two Hermitian matrices shown as (80) at the
bottom of the page. In (80)

(81)

and and , ,
, are and matrices, whose

th entries are given, respectively, by

(82)

(83)

In particular, for , in (81) and the th
entry of in (82) reduce to

(84)

(85)

Proof: Let us dilate the matrix to the matrix
by affixing zero elements. Then, this augmented ma-

trix has the eigenvalues and
additional zero eigenvalues. Note that zonal polynomials de-
pend on its Hermitian matrix arguments through Schur func-
tions in the eigenvalues of matrix arguments [75]–[78]. Since
Schur functions are invariant to augmenting zero elements [80],
it is easy to show that

(86)

Let be additional zero eigen-
values and denote the left-hand side of (80) by for con-
venience. Then, it follows from (86) and [7, Lemma 3] that

(87)
From a computational point of view, (87) presents numerical
difficulty since the Vandermonde determinant
or becomes zero when some of the ’s or ’s
are equal. This can be alleviated by using Cauchy’s mean value
theorem (or L’Hôspital’s rule)

(88)

(80)
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where means that

...

Let -dimensional vectors and be

(89)

(90)

and let and be the th derivatives of and
with respect to , respectively. Note that the th compo-

nents and , , of and
are given, respectively, by

(91)

(92)

where (91) follows from the differentiation identity of [81, eq.
(7.2.3.47)]. Then, taking the limits on ’s, we get

(93)

with the matrices

...
(94)

...
(95)

and the matrices and
. From (91) and (92), it is easy to see that the th

entries of and are given, respectively, by

(96)

if
otherwise.

(97)

Now, using the result on the determinant of a partitioned matrix
for invertible

(98)

we have

...
. . .

...

(99)

Hence, combining (88), (93), and (99) gives

(100)

where is the submatrix of the Van-
dermonde matrix of .

Using similar steps leading to (93), we obtain (101)
at the bottom of the page, where the th entries of

matrices and matrices , ,
, are given by (82) and (83), respectively.

Finally, substituting (101) into (100) completes the proof of the
lemma.

As a by-product of Lemma 4, we obtain the following deter-
minantal formula for the hypergeometric function of one matrix
argument.

Corollary 3: If in Lemma 4, then we have

(102)

Proof: The result follows immediately from (98) and
Lemma 4 with , , and .

C. Some Statistics

Lemma 5: Let . Then, for
and , the th-order cumulant

of is

(103)

where is the MGF of

.
Proof: Since

(101)
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is a quadratic form in complex Gaussian variables, whose char-
acteristic function has been reported in [82], it can be readily
shown that

(104)
Therefore

(105)

Hence, we obtain the result (103) from (105) with .

We remark that the cumulants, except for the first-order
cumulant, are invariant with respect to translations of a random
variable. The first- and second-order cumulants are the mean
and variance of the underlying random variable, respectively,
and other higher order statistics can also be obtained from
general relationships between the cumulants and moments.
Lemma 5 reveals that all cumulants of as func-
tionals of the eigenvalues of and are MIS.

Lemma 6: Let . Then, for
and , we have

(106)

Proof: We first start with the characteristic function of
. Let and
. Then

(107)

where follows from Lemma 3 and

(108)

It follows from the characteristic function in (107) that

(109)

with

(110)

(111)

(112)

Using (109), we obtain

(113)

from which (106) follows readily.

Theorem 7: Let and
be statistically independent com-

plex Gaussian matrices. Then

(114)

(115)

Proof: Using the first two cumulants from Lemma 5, we
get

(116)
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where it follows from Lemma 6 that

(117)

and from Lemma 5 that

(118)

Combining (116)–(118) yields the desired result (114).
Similar to (116), we have

(119)

From (117)–(119), we obtain the desired result (115).

Theorem 8: Let , , and
be the eigenvalues of in any order. Then, the

joint probability density function (pdf) of the ordered eigen-
values of a central complex Wishart
matrix is given by

(120)

where

(121)

and and , are
matrices, whose th entries are given, respec-

tively, by

(122)

(123)

Proof: The joint eigenvalue density is
given by [75, eq. (95)] in terms of the hypergeometric function
of matrix arguments. To render this joint pdf more amenable
to further analysis and computationally tractable, we apply
Lemma 4 to [75, eq. (95)], which results in (120) after some
algebra.

Note that (120) is valid for any covariance matrix with the
eigenvalues of arbitrary multiplicity and hence, generalizes the

previous determinantal representation for the joint eigenvalue
pdf of Wishart matrices. If in Theorem 8, all of the
eigenvalues are identically equal to one and hence, with

, , and , (120) reduces to [22, eq. (6)].
Furthermore, if all the eigenvalues of are distinct, then, with

and , (120)
reduces to [22, eq.(18)].

Theorem 9: Let , ,
be Hermitian positive definite, and be the

eigenvalues of in any order. Then, the joint pdf of
the ordered eigenvalues of a matrix
quadratic form is given by (124) at the bottom of the
page. In (124), and , ,

, are and
matrices, whose th entries are given,

respectively, by

(125)

(126)

Proof: Let , then is a
positive-definite quadratic form in the complex Gaussian matrix
[21, Definition II.3]. Using the pdf [23, eq. (2)], we can write the
joint eigenvalue pdf of in the form

(127)

where

, is the complex multivariate gamma function,
is the gamma function, and .

In (127), is the unitary group
of order and is the unitary invariant Haar measure on
the unitary group normalized to make the total volume
unity. Similar to Theorem 8, we obtain the desired result (124)
applying Lemma 4 to (127).

Definition 4 (Characteristic Coefficient): Let be an
Hermitian matrix with the eigenvalues in

any order. Then, the th characteristic coefficient ,

(124)
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, , is defined as a partial
fraction expansion coefficient of such that

(128)

where is a scalar constant such that is nonsingular. The
th characteristic coefficient can be determined by

(129), at the bottom of the page, where .

Note that the characteristic coefficients are invariant with re-
spect to the constant and only a function of the spectra of .
In addition, it can be seen from (128) with that the sum of
all the characteristic coefficients is equal to one. By definition,
we have

.
(130)

Example 6 (Constant Correlation Matrix): Consider a con-
stant correlation matrix . Since the eigenvalues of
are and with multiplicity, it is easy to
show that the characteristic coefficients of , , are

(131)

(132)

where

Theorem 10: Let , , and
be the eigenvalues of . Let be a pos-

itive-semidefinite matrix with the eigenvalues .
Then, for , we have

(133)

where is given in (121) and ,
, are matrices whose th

entry is given by

(134)

where is the th characteristic coefficient of .
Proof: From Theorem 8, we have (135) at the bottom of

the page, where follows from the fact that the integrand is
symmetric in and follows from the gener-
alized Cauchy–Binet formula [22, Appendix], [23, Lemma 2],
yielding the th entry of matrices ,

, as

(136)

(129)

-

(135)
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Using a partial fraction decomposition, (136) can be written as

(137)

where the characteristic coefficients is given by (129).
We complete the proof of the theorem by evaluating the integral
in (137) with the help of the following integral identity:

(138)

where , , and .

Corollary 4: Let , .
Then, for , we have

(139)

where is the Hankel matrix whose th
entry is given by

(140)
Proof: It follows immediately from Theorem 10 with

, , , , , ,
, and .

Theorem 11: Let , ,
, and , , be the eigenvalues of

and , respectively. Then, for , we have

(141)

where and are the th and th char-
acteristic coefficients of and , respectively.

Proof: It follows from Lemmas 1 and 2 that

(142)

where and .
Denoting the left-hand side of (141) by and using
(142), we have

(143)

Now, introducing a delta function to decouple the expecta-
tions for and in (143) yields (144) at the bottom of the
page, where is obtained by replacing the delta function with
its Fourier representation, follows from Lemma 1, and
is obtained from Definition 4. Using the integral identity, for

, , and

(145)
(144) can be written as

(146)

Finally, we obtain the desired result (141) by evaluating the in-
tegral in (146) with the help of (138).

APPENDIX III
PROOFS

A. Proof of Theorem 1

We first prove Theorem 1 for -ary phase shift keying
( -PSK) signaling. The SEP of the OSTBC with -PSK
constellation can be expressed as [41], [42]

(147)

(144)
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(155)

where and . From (147), we can
obtain the upper bound as

(148)

which becomes tighter as increases [49], and hence yields

(149)

Therefore, the asymptotic behavior of the MGF at
large reveals a high-SNR slope of the SEP curve.

Suppose that is sufficiently large. For , it follows
from (7) that

constant

(150)
Similarly, using (8), we have for

constant

(151)
Hence

(152)

from which (10) follows immediately. For a general case of ar-
bitrary two-dimensional signaling constellation with polygonal
decision boundaries, the SEP can be written as a convex com-
bination of terms akin to (147) [83]. Hence, we can easily gen-
eralize the proof to the case of any two-dimensional signaling
constellation.

B. Proofs of Properties 1–3

1) Proof of Property 1: Let be the eigenvalues
of . Then, the correlation figure defined in Definition 2
can be written as

(153)

which is symmetric in and holds Schur’s condi-
tion (61). Hence, we complete the proof.

2) Proof of Property 2: Since ,
it follows immediately from Property 1.

3) Proof of Property 3: Let be the eigen-
values of . Then, can be
written as

(154)

which is symmetric in

and holds Schur’s condition (61). Since

are the eigenvalues of , we complete the proof.

C. Proof of Theorem 2

Using Theorem 7 in Appendix II, we get (155), shown at the
top of the page. Combining (24), (25), and (155), together with
the fact that , yields (31).

D. Proof of Theorem 3

In this case, the ergodic capacity (or Shannon-sense mean
capacity) is given by the well-known expression [2]–[4]

bits/s/Hz (156)

which is achieved by the complex Gaussian input
.

From [53, eq. (35)] and [53, Theorem 9], we get

(157)

and

(158)

Using Definition 2 and Theorem 7 in Appendix II, (158) can be
expressed in terms of the correlation figures of , , and
as in (39).

E. Proof of Theorem 4

Due to the channel decoupling property of OSTBCs, the
Shannon capacity (bits/s/Hz) of OSTBC MIMO channels can
be written as

(159)

which is achieved by complex Gaussian inputs
. From [53, eq. (35)], [53, Theorem 9], and
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the first two derivatives of (159) at , it is easy to show
(44) and

(160)

from which and Theorem 2, (45) follows readily.
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